=

GRADUATE SCHOOL

GENT WULTIDISK

MSCU> NAVAL POST

[
L J
nd
%
wwn
o2
A
>
%
o
-
g
25
=
i
e
W
[~
]
[

H$5 $37 THE DESION OF AW INTELLI

o - e o -

- ST

S
PO T

BRI MRS

Sl

N

e ys 55 ale the!
‘.‘.’m'»'.'c‘.'.'fhﬂ

L

e dn 1y RV p § AT FY IRy
AN S N O L K N N A T Lo o)

iz iz

ol S

o

o

|

TEEEEIR

[
=
. -

et

I

)
(&

I

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

AD-A195 587

NAVAL POSTGRADUATE SCHOOL
Monterey, California

DTIC

ELECTER
JUN 031988

THESIS *H

THE DESIGN OF AM INTELLIGENT
MULTIDISK CONTROL MODULE FOR
VME BUS BASED SYSTEMS
by

Steven L. Brooks

December 1987

Thesis Advisor Larry W. Abbott

Approved for public release; distribution is unlimited.

58 6 i 1o

R
)
b

N
.
- . . - . "
TN AR~ S S L R

TECLRITY C_ASS S Ca- oy OF = FAcCt
REPORT DOCUMENTATION PAGE
1a REPORT SECURITY C_ASSIFCAT ON 10 RESTR.CT.VE VARK/NGS
UNCLASSIFIED
2a SECURITY C.ASSIFCATION ALTHORITY 3 DISTRIBUTION AVAILABILITY OF REPORT
Approved for public release; distri-
2b DECLASSIFICAT:ON. DOWNGRADING SCREDULE bution is unlimited
. 4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)
. 6a NAME OF PERFORMNG ORGANIZATION 60 OFF:CE SYMBOL | 7a NAME OF MONITORING ORGANIZAT.ON
(If applicable)
Naval Postgraduate School 62 Naval Postgraduate School
6¢c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
Monterey, California 93943-5000 Monterey, California 93943-5000
8a. NAME OF FUNDING SPONSORING 80 OFFICE SYMBOL | 9. PROCUREMENT NSTRUMENT (DENT F:CAT.CN NUMVBER
ORGANIZATION (If applicable))
8c. ADDRESS (City, Stare. and ZiP Code) 10 SOURCE OF SUNDING NUMBERS |
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO NO ACCESS.ON NO
11 TITLE (Inctude Security Classification) |
_‘ Y urity ! THE DESIGN OF AN INTELLIGENT MULTIDISK CONTROL
MODULE FOR VME BUS BASED SYSTEMS(U)
. 12 PERSONAL AJTHORI(S)
BROOKS, Steven L.
'3a TYPE OF REPQRT 13p T ME COVERED 14 DATE OF REPORT (Year, Month, Day) |15 PAGE COUNT
Master's Thesis F2POM 7O December 1987 a1
) 16 SUPPLEVENTARY NOTAT.ON
7 COSa”™ CODES '8 SuUB.ECT TERMS {Continue on reverse if necessary and identify by biock numbper)
FELD GROUP §_B-GROLP VME bus, flexible disk drive, disk controller,

concurrent disk operations

|

'3 ABSTRACT (Continue on reverse if necessary and igentity by block number)

The design of an intelligent multidislkk control medule for VIIE bus
based sy:ztems 1is presented. The control module 1is designed to surpor:
concurrent disk operations cn up to £four £flexible disk drives with
nultirle VME bus MASTERS. The design is presented for a UNIX compaticle
operating system but the c¢perating system interface 1is kept six p’.e
eno.xg'm that the multidisk control module can be used with most mcdarn
cperating systems with minimal changes required.

1
20 DiSTRIBUTION . AVAILABILITY Of ABSTRACT 21 ABSTRACT SECURITY CLASSIF:.CATION
®@ uncassiFEd UNUMITED [samE as ReT O oTic users UNCLASSIFIED
ZL NAME o» RESPONS.BLE INDIVIDUAL 22b TELEPHONE (Include Area Code) -2c OFF CE SYVBOL
arry W. Abbott (713) 483-8593 G2Ar
DD FORM 1473, 8amar 83 AR ed.t on May De used unti exhausted SECURITY CLASSIFICATION OF TH'S PAGE
All other egitions are obsolete U'S Goverament Printing Office 1386—606.24

1 UNCLASSTFIED

mﬁih.,;r.b' b P A

Approved for public release; distribution is unlimited.

The Design of an Intelligent
Multidisk Control Module for
VME Bus Based Systems ,

by

Steven L. Brooks
Lieutenant Commander, United States Navy
B.S., University of Utah, 1978

Submitted in partial fulfiliment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING
from the

NAVAL POSTGRADUATE SCHOOL
December 1987

Author: _ JI‘:"A\ X G’\“)‘U’{A

Steven L. Brooks

Approved by:

esis Advisor

o % —
Fredark Y Lo
rederick erman, Second Reader

John P. Powerc Chairman,

epwlecmcal and Computer Engineering

Y G. E. Schacher,
Dean of Scic.ce and Engineering

2

R T R X R G D R I N A R R R o Ry R e R R T O N o X T R O O e

A
‘- ABSTRACT
. g
“ The design of an intelligent multidisk control module for VME bus based systems
. is presented. The control module is designed to support concurrent disk operations on ;
up to four flexible disk drives with multiple VME bus MASTERS. The design is

: presented for a UNIX compatible operating system but the operating system incerface)
, is kept simple enough that the multidisk control module can be used with most modern E
' operating systems with minimal changes required. !f? S +L7:’;; _ J
P ; : , + oo 2 s N

" ',\‘(-’,.L.-,l‘f" -'{“9‘1, ,‘. W T Ak Jj\"‘ U(/,.# r ros L/ ‘/ ',) N
O M Uth(ilf{ifdithQ'J LCCRSS Tomee i 2 AT AU A A B!

-

. N
ek as o b 2o [LRY ¢
1 A '/f) f’ ﬂ(' .
i

'

T g e

.
E |

g

.)
; 4
K i
5 ;
. i
>
: i
: £
[
| Accession For - f
[NTIS GRA&I Cd 3
DTIC TAB 0
* Uuanusunced O
Justirication— |
t
. ! By_ ;
Dist;ibutiqn/~_wvhu
Availability Uodog
: 3 ~ |avatil and/or \
| Dist Special t
i 6
'
2
L ‘
A-/1 i
+

v

i AW i v] K ! o ’ L] P - - ’ - o™ [RN
T TN K TR I G W NS R MO 13 MO O, OSSR OO RO i e i T 0t ‘.. Do

TABLE OF CONTENTS

L. INTRODUCTION . e e e
A, BACKGROUND ...
B. DESIGN OBJECTIVES ...
C. HOST SYSTEM .. e
D. MAJOR COMPONENT SELECTION
1. Control Processor ...,
2. Direct Memory Access Controller
3. Disk Drives. ..o
4. Disk Drive Controller i
11 PRELIMINARIES ... e
A. OPERATING SYSTEMS ... e
B, UNIX o e
C. VMEBUSOPERATION ... i
D. DISK DRIVES ... e 25
I HARDWARE DESIGN ... e i
A. ARCHITECTURE i
. HosttoDCM Interface i,
2. DCMtoDiskInterfacecoovvi i 28
3. DCM Internal Architecture 23
B. HOSTINTERFACE i 32
1. Software Interface 32
2. HardwareInterface 33
C. DCM CONTROL 435
I. CCU Local Memory ... 46
2. CCU Support CirCuitsovvviviiiinininnennenen.... 50
3. CCUBusControlo e Sl
4. Interrupt Control e L od
4

| pe o 4
X

w» I

s

%

K L X

f

" S

o

e

T N N W N T R I TR T WA R W WO O R TS AU AW T TR T X P e lva vy gta pta ptes W\

_ ¥ W W & SV 009, 4 ':

D. GLOBAL BUS ACCESS CONTROL ...oovvn 36 .t

. Global Bus Arbitrationooovireiii i s g

2. Local Global Bus Interface 39 i

E. DMA CONTROL . .. e, 0l .

) L. DMAC Bus CONtrol v 64 :
2. Global Bus Control i 07 19

* . Global Memory ..o 68)
F. DISK CONTROL ... s 68 »

J

1. Disk Controller 71 ;_
2. Disk Interface. ... v 74 X

3. DMARequestDelavo o i 73 i,

[v. SOFTWARE DEVELOPMENT oo e i, 79 A

A, USER COMMAND EXECUTION .. i, S0 :;

B. DCM COMMAND EXECUTION ..o, $2 h

V. CONCLUSION o sS4 -

A, SUMMARY OF RESULTS .o, N .
. B. RECOMMENDATIONS FORFFUTURE RESEARCH S5 »-
APPENDIX: FUNCTIONAL BLOCK SCHEMATICS $6 3
. N
LIST OF REFERENCES ... s 89 o)

INITIAL DISTRIBUTION LIST .o s i 90

g,
"
£
Y

‘|

b

i ‘i
: !
: :
; [
&

’ .
&

X
5 i
[',
0
Y
4
l.

- . P R i < A .)
VR T e e T e B T e e e R b N T R L 1 T N S S R S R A N i R T R A et T e N St e

RGP R AT RN UM R T N U U UN U USCUAERAS USRS U USROS LY CCW DA OUS UM LT U LWL WO
L S T B TSI C IR Y | K 3

LIST OF TABLES

l 1. INTERRUPT CODES 54

3
)
4
LIST OF FIGURES '
- .:
1.1 Host System Block Diagram 11 .:
’ 20 UNIN Architecture 7 v
2.2 UNIX Kernel Block Diagram oo 18 A
2.3 VME Bus Elementsot 20 :
24 IBM 3740 Disk FOIMIAt .« .ot ettt oo e 24 bt
3.1 Generalized DCM Block Diagram i 27 L
3.2 DCM Internal Bus Contention it 28 7
33 DCM Dual Bus Configurationo, 20 Y
34 Detailed DCM Block DIagramoovenennnen e, 51 "
33 Host View of DCM Memory Map i 32 o
3.0 Host Interface Block Diagram i 34 .
3.7 VME Bus Interface 36 f"
. 38 Buffer Memory Port A 37 'i
3.9 MOAULE SEIECt .ttt 38 3
300 BUS CONIOl vttt ittt 39 5
311 Address Counter Latch 41) :
312 Read Write Controlo 42 '
3.13 Command Interrupt Generatorut e i, 44 y
3.14 VME Bus Interrupt Generatorot i 43 o4
3.1 DCM Internal Organization 47 '%
3,16 DCM Internal Memory Map ... 48 .f'
307 CCU Local MEMOTY v oo e e 9 o
3.18 CCU Control of VME Bus Interrupt Generator 5
3.19 Clock Generator and Reset Circuits v, Sl 3
3.20 Memory Control Circuitst 32 Y
321 Local DTACK.BERR Circuitsoovvvneiananieiniaan. .. 33 o
3.22 Interrupt Control CIrCUItS . . o oot 53 7
3.23 Global Bus Arbitration Circuit e 38 C
. X
W
o
! :
N
DML IR A A M A A LR D R X AL A T T O MR~ UM I 20, 5 A et A S SRR S e W W 0 W & W e ™ e ":

(v}

LS 991
[99)
—

(P]

L9 I V¥]
t

LS] (%)

R

tJ . (]

PPRNY L 1D 19t o o
ORI [N I Y I~ N T}

2% S0 DoV 29 DoF BV 0.8 Ba® S0 hap RV B0 B0 0 B0 A0 LR A8 AR R A A

Local Global Bus Interface Circuit ol
DMAC Signals 03
DMAC Bus Control ... 63
Global Memory Control 67
Global DTACK BERR 69
Global Memory ... o 70
Disk Control Block Diagram i 71
Disk Controller 72
FDC Muiptiplexed Signals 73
Disk Interface ... 70
DMA Request Delay 78
USER Command Execution Flow Chart St
DCM Command Execution Flow Chart 83

3

S ;i';

:-f‘

,'_?

Y

[. INTRODUCTION

A. BACKGROUND

The arrival of the current. more powerful, and faster 16 32 bit microprocessors
has enabled the development of high performance desktop svstems rivaling main {rame
svstems of ten vears ago. These high performance microcomputer svstems are capabic
of supporting multiple users and mayv consist of several processors working together in
systems of mixed capacity and speed. To eflectively use the [ull potential of these high
performance microcomputer svstems a different architectural approach to sistem
organization must be adopted; one that elinunates the traditional small svstem “bottle
necks”,

One of the areas most in need of an improved architecture approach is the
control of svstem input output (1 O). Maximum performance is achieved when the
processors are not kept waiting bv slower devices but are allowed to continue
processing while the slower devices catch up. This area is particularly important to
multiuser systems where total throughput is 1. O bound. primarily by how fast user
data 1s exchanged with secondary storage, typically disk drives.

Time lost to waiting is particularly evident in data transfers with flexible disk
drives (floppy drives). In the best case, with the disk head over the data to be
accessed. a typical floppy drive requires 13 to 27 microseconds to transfer a byvte of
data, while a typical processor requires less than 1 microsecond to transier the same
byte of data. This amounts to the processor spending at least 90%6 of the transfer time
waiting for the floppy drive. This assumes the traditional direct control of the floppy
drive by the processor.

Some new designs attempt to alleviate the floppy I O wait problem by using
direct memory access controllers (DMAC) to do the data transfer. This allows the
processor to set up the transfer, then proceed to other tasks instead of waiting for the
transfer to be completed. Some examples of this are the new IBM Personal Svstem 2
series systems and some high performance VME bus svstem modules produced by
Motorola, Force Computers and Signetics. The DMAC approach eliminates the need
for a processor to wait for a data transfer: however, a "bottle neck” still exists in a

multiuser system.

R A

In multiuser systems the user’s primary memory space is normally not large
enough to meet program and data needs so portions are held in secondary storaye,
disks, until needed. When a user’s process requires access to the disks, that process
“sleeps” during the transfer and the processor executes another user’s process. The
“bottle neck” appears when many processes neced access to the disks and the user
processes stack up waiting for disk access. This occurs because most desktop svstems
attach up to four dJisk drives to a single disk controller, but only one disk drnive can
transfer data at a time . Thus, even if the required data is on a separate disk, the [O

svstem can only access one disk at a time. A way to improve disk access Is to use

nultiple disk controilers to allow concurrent disk operations. The combination of

concurrent disk operations and direct memory access will eliminate the small syvstem
[O "bottle neck”.

B. DESIGN OBJECTIVES

The objective of this thesis is to develop a hardware kernal of a disk control
module (DCM) that incorporates the benefits of direct memory access and concurrent
disk operations, as discussed above. The DCM should hide the disk drive comunand
and control requirements by accepting high level commands from the host and
translating the host commands into the commands and control signals required by the
disk drive. The target cnvironment (host svstem) is a small, inexpensive but powertul
and flexible development svstem that may begin small and expand to meet user needs.
The DCM should be flexible enough to accomodate a variety of comunon floppy disk
drives and be easily integrated into a svstem. The hardware and software interfaces
should be general enough to allow easy migration to any system.

To support these objectives a modular design will be developed to achieve an
architecture that can be easily modified to accomodate changes in major interfaces.
The major interfaces, host to DCM and DCM to disk drive, will be kept as general and
as simple as possible to allow easy migration to a variety of host systems. Migrating
to a different bus system, operating system, or changing disk drive tyvpe should not
require redesigning the DCM but rather just those interfaces directly affected by the
changes. This should allow cost and performance tradeofls to be easily accomodated

and changed as system requirements change.

LA,

S

el

[d

- Z'.. 1‘1?

et g8 o ok v O

C. HOST SYSTEM

A block diagram of the host system is given in figure 1.1. The host svstem will

consist of one or more processors and additional functional modules for printers,
displavs, memory, ctc. One of the primary attributes of the host system 1s flexibility; it

should be able to accomodate functional modules with varying data path widths (8, 16,

«
L]

or 32 bit), varving access time requirements, and allow the functional modules to be

added or removed with minimal adjustments required. The host is assumed to have
multiuser capabilities but this is not a requirement; the DCM should bencfit single user
3 svstems as well as multiuser svstems. As shown, multiple DCM’s may exist in the host
svstermn to accomodate heavy I O demands.

BUS CONTROL

)

T e S

C> PROCESSOR
1

RALLLSSL kRSSO

: 0 PROCESSOR :
X DCM 2 2 N '
.4. |
; g !

W »

0 » .
: l o ! ;
: | TERMINALS <:> - <:> MEMORY | :
M X } ¥
: | : 1
S . !
B MODLLE PRINTER | :
| UNDER CONTROL i
’ DEVELOPMENT

<

-

- .

Figure 1.1 Host Svstem Block Diagram.

—

1

, .

v
a
~d
\

- . -

R R AT AR TR TV Il P It It s Sy A AN o5

. . u PPN SYE PR I R D PR L IR
ERTUOUEIOCS IR AN RN R MRS T X A W o o o ’ R, IJ‘V Bt A o Ly A

T

Lo Tl

FA B T

- e e
R S g L]

[

o PSR

PRI R

;o 9

[P

¢

s

a. Host Bus Architecture

The host bus architecture is a key element in the tlexibility of the svsten,
As indicated earlicr, the host system will be composed of modules with varving access
times and different data path widths. The ability to support such a muxture of moduies
ts important in allowing older modules to interact with future designs without
redesigning the older module’s bus interfuce. The simplest type of bus with the above
attributes is an asyvnchronous bus with support for multiple data path widths [Refl 1].

A review of currently available buses (Refs. 2.3} reveals two possible bus
svstems:

e Futurebus (IEEE P896) and
e VME bus (IEEE 1014).

The [uturebus is a very high performance asvnchronous bus with
nultiplexed data paths of 8, 16, and 32 bits. This would have been an excellent choice
but the specification is still evolving and is not published {or design use vet.

The VME bus is a well established. high performance asvnchronous bus
with nonmultiplexed 8, 16, and 32 bit data paths. The bus svstem specification is
published, well documented. and has significant silicon support f{rom Motorola,
Signetics, and others. The 16 bit data 24 bit address version of the VME bus will be
used as the host svstem bus for the design presented here.

b. Host Operating System

In order to maintain the host’s generality and flexibility, the host operating
svstem should be one that is used on a variety of processor types and is easilv changed
or expanded. This host software intertace generality is required to allow the DCM to
be dusigned with relative independence from the host hardware, thus allowing a wider
range of host processor types to be accomodated. The flexibility is in keeping with the
desire to start small and grow as required. It does little good to have a flexible
hardware design if the software can not take advantage of it.

The UNIX operating system fills the above requirements nicelv. UNIX
hides the machine architecture fromn the user and runs on a wider range of processor
types, from microprocessor syvstems to main frames, than anv other operating svstem.
The DCM can be thought of as a user in this case. Because UNIX is modular and
written in a high level language, "C”, it is relatively easy to add or change functional
software modules. Additionally, UNIX has a simple, consistent interface to peripheral
devices and multiuser capabilities. [Ref. 4: pp. 3-4]

12

>~
o
"
»

e ; N 4 : I ! A b ¥ N W W o B8 LA EE RS BT B UL AN LR LTS T T S TR
O A N MO ML OO 3 OGO O I ¥ OO OO i i Xl A sl ol P Ot o, o RPN

TR LN I Y W U T TR T N IR RN YO T AN A SR PN AR TN P N Wy W ¥ TRNDRDOUTUT RTINS RSN “
'l
)
{
D. MAJOR COMPONENT SELECTION
N
I. Control Processor 3
The DCM control processor is responsible for executing high level conunands
. from the host and coordinating the data transfers between the host svstem bus and the by
attached floppy disk drives. The execution of host commands is essentially a translation i
process where the terse host commands are expanded into the more detailed command ;
»
scquences and control signals required by the floppy disk drives. The performance
required for the control processor is a function of the tasks assigned by the host .:
svstem. These tasks may be as simple as fetching a block of data or as complex as .ﬁ
y
acting as the svstem file manager. In all cases the physical characteristics of the floppy ':
. . . . "
disk drive are hidden from the host and used only by the control processor. 2
The combination of target host bus system (VME bus), operating system :;
(UNIX), and possible complexity of tasking makes the Motorola MC6S000 "
microprocessor an excellent choice as the DCM control processor. The VME bus was ::
originally designed to support the MC68000 and there are many UNIX svstems based “
on the MC68000 family of microprocessors. Additional supporting attributes are: 7
.
® cost - relatively inexpensive, S10 for an 8 MHz version MC68000 'r
- e silicon support - extensive family of peripheral support chips available from ;
multiple manufacturers
* compatibility - upward compatible with more powertul members of the 9
MC68000 family; pin-for-pin compatible with the MC68010, A
affording an easy upgrade path to virtual machine virtual v
memory operation ::
¢ longevity - used In many current microprocessor svstems, cnsures ;
continued future support =
* software support - extensive software support from many vendors: including .
operating systems, high level language compilers, and utility -
libraries
2. Direct Memory Access Controller N
The MC68000 has three powerful direct memory access controllers as !

peripheral support chips which are software compatible with each other. They are:
¢ MC68430 - one DMA channel ~)
® MC68440 - two DMA channels

® MC68430 - four DMA channels %
The MCG68450 will be used in the DCM design to offer maximum disk drive 3
support. Reduced versions of the DCM would use the MC68430 or MC(8440 and a)
G

subset of the MC68430 software developed here.
13 N
b
S
"

)
: AT A T T . ‘ " Lot - o " L
BORORANARLARKININ MRS 0% AT ISR S S M RIS R A A, Rt AR S RS SRR W N R I A A

iy do e ek

Lo
P

B I N T N I N T T I TV (T U YO N LY LY NUW UYWL A Sal il Salitialh Sol Fad ol Sol Sall .0 0.0 4. 0" 0.0 0 A N Sl

3. Disk Drives
The floppy disk drives sclected [or use are IBM 3740 single density format
(FM) and [BM Svstem 34 double density format (MEM) compatible drives. These are
the most common and least expensive of the floppy drives available todav. Thev
include 8 inch, §-1 4 inch and 3-1 2 inch form factor drives with formatted capacities of
180 kilobytes to 720 Kkilobvtes per disk. The IBM compatible drives were sclected

features. The current trend is to combine the controller with the data separator and
support circuits, reducing the the disk control function to one or two chips. Even in
these reduced count chip sets there is a variety of features available to the system
designer.

The Standard Microsystems Corporation (SMC) FDC9268 floppy disk
controller was selected for the following reasons:

¢ format - compatible with the IBM 3740 and IBM System 34 formats,
both single and double sided drives

e drives contolled - can control 8 inch. 5-1;4 inch and 3-1.2 inch drives with
capacities to 720 kilobytes

e single chip combines disk control with data separator in a single chip

® cost relatively inexpensive, S15 each in lots of one

¢ availability

readily available in large and small quantities

e software

software compatible with the very popular NEC 765 Intel
8272 floppy disk controllers used extensively in personal

!
)
primarily due to cost and availability considerations.
4. Disk Drive Controller
Selecting the floppy disk controller was one of the mcre difficult decisions in
the design process. Most manufacturcrs produce disk control chip sets with various
computer systems 3

o

14

2 AT AT ATV Ty P By b g Ay C' LN FICR, ' .0

I1. PRELIMINARIES

A. OPERATING SYSTEMS

Operating svstems act as the interfuce between the machine hardware and the

users. They consist of an organized collection of programs that allocate resources and
provide the users with a set of {acilities to interact with the hardware.

Operating systems are generally classified into four structures:

monolithic syvstems

e lavered svstems

e virtual machines

e client-server model
Most modern operating systems, regardless of structure, have the control mechanism
and higher functions implemented in a higher programming language and accomplish
hardware dependent tasks with calls to procedures written specifically to control the
hardware. [Ref. 5: pp. 36-43]

Operating systems generally perform all svstem input’output (I, O) for the users.
The goal of the operating svstem 1 O software is to present a simple. consistent. casy-
to-use intcrface to the user. The peculiarities of the hardware are hidden from the user
by organizing the I O software as a series of lavers, with the lower layers concerned
with controlling the hardware, and the higher lavers concerned with presenting the
casy-to-use interface to the user. [Ref. 5: pp. 116-118]

Lavering the I, O software also allows the higher layers to have a certain amount
of device independence when dealing with specilic types of 1. O devices. An example of
this is the operating system interface to secondary storage such as floppy-disks (disks).
The basic data structure and data control algorithms are the same for all disks.
regardless of manufacturer or tvpe of disk drive. The higher layers of the I. O software
can implement data management, and the lower lavers can adjust for hardware
variances. {Ref. §: pp. 118-120]

The lowest layer of 1'O software consists of the procedures that interact directly
with the hardware. There may be several procedures at this level to deal with the
various hardware requirements such as formatting or reading a disk. This hardware
specific layer of procedures is common for most modern operating systems and is the
simplest common point between operating systems.

15

s ra aly e A G 2B T TR AT UM U TO TSR v X X0 A S IUOUT AR RN W AL UMY

The hardware specific procedure javer of the operating svstem will be the level
used to interface the disk control module (DCM) to the operating svstem. The
hardware specific procedures are nothing more thun softwarc modules that accet
command parameters and data from higher operating svstem levels and generate the
required instruction flow to activate the required hardware signals to accomplish the
Jesired task. Interfacing the DCM at this level means designing the DCM to appea
as a software module to the host operating system.

Creating the software module appearance is not ditlicult. All that is required is
memory accessible to the host and DCM for command and data exchanges. This

arrangement should work for virtually any modern operating system.

B. UNIX

A complete discussion of the UNIX operating system is bevond the scope of this
paper. The UNIX operating svstem is included here to show that the software interface
selected above is satisfactory for interfacing the DCM to a UNIX svstem. The
following discussion is intended to show the hardware dependent software module
location in the UNIX architecture, the DCM software interface level, and general
interaction with UNIX.

The UNIX operating system can be viewed as a lavered operating svstem. A
high-level view of the UNIX architecture is shown in Figure 2.1. The outer most laver
represents the user’s interface to UNIX. The next laver consists of utility prograins
such as a text editor and system cormunand modules. The inner most laver of UNIX,
surrounding the hardware, is the heart of the UNIX operating svstem, the kernel.

The UNIX kernel allocates resources to and controls all user processes. The user
interacts with the kernal via the utility programs which pass user requirements to the
kernel by well defined system calls. A block diagram o the kernel is shown in Figure

S

rayr

The UNIX file subsystem uses index nodes (inodes) and inode tables to identily
and locate files. Each file has a single inode which contains a description of the disk
layout of the file data, logical unit on which the file is located, and administrative data
about the file. The file subsystem translates the user’s file name into an inode and
enters the inode into the kernel inode table indicating that the file is active. Each disk
contains an inode list of all the files on the disk, similar to the file allocation table used
in MS-DOS.

16

3

UTILITIES

KERNEL

Figure 2.1 UNIX Architecture.

The file subsystem deals with {ile data on a logical level vice physical disk level.
‘The internal tables for controlling file data manipulations are based on logical device
focations. The translation of the logical device location to a physical device location
takes place in the device drivers.

The file subsystem has the ability to cache data as it is manipulated. Caching

data is used to minimize the {requency of the relatively slow disk accesses by keeping

normally put into bullers for manipulation and then returned to the disk when it is no
longer needed. The transler of data to the bullers is accomplished by the device drivers
as directed by the file subsysten.

The device drivers are tailored to particular types of devices. There will be
scparate device drivers for disks, terminals, magnctic tape, ctc. The device driver

translates the logical location parameters and operation commands received from the

current data resident in kernel memory builers. New data read from the disk s i
. l

R A A O AR O A OB DS OISO OGS OSOB NI wmmmmmmmmj

iR ¥ N ’ - - mn Tatan r
A A ARG AANANG AU RTINS B T RSO N A D XA O O T e Y

TR R AR R TR A R R TR WA R U VU U U U U UV LA USRI VW U UW LTINS LWL WA R LMV s

- er W e e m e = W e wm e W e = = -

SYSTEM CALL INTERFACE

FILE PROCESS
SUBSYSTEM CONTROL
SUBSYSTEM
BUFFER
CACHE

DEVICE DRIVER

- wm o em e e e wm e wm mw mm mm e o em e am e e o e o o e e = o o o e e

Figure 2.2 UNIX Kernel Block Diagram. ‘
file subsvstem into physical locations and operations suitable for the specific type of
device to be operated on, disks in this case. The physical location parameters (scctor,
track, and disk drive number) and the operation to be performed are passed to a disk
control subroutine in the hardware control layer. The disk control subroutine s written
to carry out the operation on the specific disk drive installed.
The DCM will intetface to the UNIX operating system at the hardware control
laver by cssentiallv replacing the disk control subroutine. Only minor changes to the '
device drivers will be required because the DCM will function like the disk control
subroutinc it replaced. The DCM will appear to the device driver as a soltware module ;

in memory.

18

C. VME BUS OPERATION

The VME bus is one of several bus svstems available to wnterconnect data

processing, data storage, and peripheral control devices into a closely coupled hardware
configuration. The VME bus is an approved IEEE bus standard (ILCEE 1014)
developed by Motorola, Inc. to support Motarola 63000 nucroprocessors as a
backplanc bus.

The VME bus was designed to provide the systems designer with a flexible bus
architecture with which to construct microprocessor svstems with off-the-<hell
hardware and software components. Hardware and <oftware components designed for
VME bus applications are available from Motorola, Signetics, Mostek, and others.

The main strengths of the VME bus are best shown by the objectives of the
VME bus specification as summarized below:

¢ to allow communication between devices on the VME bus without disturbing
the internal activities of other devices interfaced to the VME bus,

® to specifv the electrical and mechanical system characteristics required for
reliable and unambiguous communication,

® to specitV protocols that precisely define the interaction between the VME bus
and the devices interfaced to it, and

® to provide a svstem where performance is primarily device limited rather than
svstem interface limited.

The elements of a VME bus based system are shown in Iigure 2.3. The user
devices interface to the VME bus via the functional modules and bus interface logic.
The functional modules provide protocol control of the interaction between the VME
bus and user’s devices, and the interface logic adheres to the specified drive and loading
requirements of the interfaced devices. The bus interface logic consists of relatively
simple TTL receivers and transmitters because the VME bus drive and timing
requirements were designed with these otl-the-shelf interface devices in mind.

As seen in Figure 2.3, the VME bus consists of four sub-buses:

e data transfer bus (DTB) - provides data, address, and control signals to allow
VME bus MASTERs to direct data transfers between themselves and DB
SLAVES

e arbitration bus - provides a means of transferring control of the DTB between
two or more MASTERS in an orderly manner

e priority interrupt bus - provides seven levels of interrupts for interfaced devices
to request interruption of normal bus activity

e utility bus - provides signals for timing and coordination of power-up and
power-down of VME bus svstems

19

¢ oL P g R M R N R K e W LN LT

USER'S ATA pATA pATA
PROCESSING STORAGE INAUT ouTRUT
DEVICES Vi EVICE DEVICE .
ruveTione | | runcTIona FUNCTIONAL runcriona | [runerzona
PODULE MOOLLE MOLE MODULE oAr
INTERFRCE INTERFACE INTERFACE
LOGIC LocIC LOGIC
WE BUS

DATA TRANSFER LS DT

DTH ARBITRATION BUS

NN

>
>
e >
>

UTILITY BUS

UWE BUS
SPECIFICATION
L e T T) .

[igure 2.3 VME Bus Llements.

w

The VML bus protocol is enforced by the functional modules. The VML bus
specification defines eleven functional modules to support the various VME bus modes
of operation. The primary functional modules of importance to the DCM are:

e MASTER - initiates DTB cycles and controls the DTB in order to transier data
between itself and a SLAVE

o SLAVLE - transfers data between itself and a MASTLER when selected to
participate in DTB cycles

o INTERRUPTER - gencrates an interrupt request on the priority interrupt bus
and then provides status, vector information to the INTERRUPT HANDLER
when requested

o INTERRUPT ITANDLER - detects interrupt requests on the priority interrupt
bus and responds to these requests by asking for status; vector information from
the INTERRUPTER

et Wl e S

R T I T T T T N IO O WU W U P U N U U N UM U MU U YU YU N U NG o A WA U WL AU N W R

The SLAVE interface to the VME bus is the simplest of all functional modulcs
that transfer data over the VME bus. The SLAVE functional module does not initiate
or control data transfers; it can be thought of as a memory module with additional
decoding logic.

The DCM will be designed as a VME bus SLAVE with interrupt capability. This
means two functional modules will be used; SLAVE and INTCRRUPTER. This is the
nunimum configuration that provides a memory-like appearance and has interrupt
capability.

The SLAVE functional module can be designed as an 8-bit, 16-bit, or 32-bit data
device with 16-bit, 24-bit, or 32-bit addresses. The DCM will be designed as a 16-bit
data device with 24-bit addresses. The INTERRUPTER functional module can be
designed to request interrupts on any one or all seven interrupt lines. The DCM will be
designed to interrupt on any of the seven interrupt request lines. The interrupt level
will be software selectable by the host system. In the above configuration, the DCM
does not need to interface to the arbitration bus.

As a SLAVEL, the DCM must monitor or generate the following VME bus
signals:

* LWORD* - designates a 32-bit data transfer request, monitored by SLAVEs
e D00-15 - bidirectional data lines

e DSO* - lower data strobe (same as 68000 LDS*), monitored by SLAVEs

o DSI1* - upper data strobe (same as 68000 UDS*), monitored by SLAVEs

¢ R W*. read write signal (same as 63000 R, W*), monitored by SLAVEs

® AMO-5 - address modifiers ,monitored by SLAVEs

e AOL-23 - 23-bit address lines ,monitored by SLAVEs

¢ AS* - address stable signal (same as 68000 AS*), monitored bv SLAVEs

o DTACK™ - data transfer acknowledge (same as 68000 DTACK*), generated by
SLAVEs

o BERR* - bus error signal (same as 68000 BERR*), generated bv SLAVEs
The above VME bus signals function the same as their 68000 memory reference
counterparts with two exceptions, LWORD* and AMD-§.

LWORD™* is used in data transfers with 32-bit devices only. As a precaution. all
devices must monitor LWORD* and must recspond with a bus error (BERR*) or not
respond at all, which causes the VME bus timer to asscrt BERR™, if the selected device
can not provide 32-bit data transfers.

21

AMO-5 are address modifier lines that specifv the type of addressing used in a
data transfer: short (16-bit), standard (24-bit), or extended (32-bit). AMO-3 also

indicates the type of transfer requested by differentiating between supervisory and non-
priviledged data, program, and block transfers.

The DCM will not respond to LWORD* transters, causing the VME bus timer
to assert BERR™. The DCM will respond to supervisory and non-privileged data and
block transters but will generate a bus error for any program transfers such as rcading
the DCM memory as program memory in instruction fetches.

The basic data transler capabilities specified by the VME bus data transter
protocol and supported by the DCM are:

e bvte transfers - even or odd single bvte transfers
e word transfers - single 16-bit transfers

¢ read-modifv-write - 8-bit or 16-bit indivisible read followed by a write to the
same address

¢ block transfer - up to 256 sequential bytes transferred with only the starting
address specified

The byte, word, and read-modifv-write transfers operate the same as in the standard
68000 memory reterence protocol.

[n block transfers the MASTER provides the starting address at the beginning of
the transfer. The SLAVE latches the starting address in a counter and increments the
address as the data strobes change. The starting address is provided only once and
incremented by the SLAVE each time the data strobes are negated. The address stable
(AS*) is asserted during the entire block transfer and AVMO-5 are encoded to specifv a
block transfer is in progress. The block transfer mode is the fastest data transfer mode
on the VME bus because the address propagation and decoding delays are encountered
only at the beginning of the block transfer.

The INTERRUPTER functional module follows the standard 68000 interrupt
request-acknowledge protocol. The INTERRUPTER generates an interrupt request on
one of the seven interrupt request lines (INTRQ*1-7) and waits for an acknowledge.
The INTERRUPT HANDLER for the asserted interrupt request line responds by
requesting control of the data transfer bus, and after gaining control. asserts interrupt
acknowledge (IACK*) to all devices and sends an interrupt acknowledge (IACKIN*)
down the interrupt acknowledge daisy-chain. The INTERRUPTERs without active

interrupt requests at the level being acknowledged pass the IACKIN* down the daisy-
chain via [ACKOUT™* which becomes the IACKIN* of the next INTERRUPTER in

the daisy-chain. The first INTERRUPTER in the daisy-chain with an active interrupt
at the level being acknowledged stops the [ACKIN® [rom propagating further down
the daisy-chain and returns an S-bit vector to the INTERRUPT [TANDLER via the
data transfer bus. The interrupt level being acknowledged is encoded in address lines
Al-3. The [ACK* signal is used to indicate to all other devices on the VME bus that
an interrupt acknowledge cycle is in progress which means only address bits Al-3 are

vahd.

D. DISK DRIVES

Floppy disk drives (disk drives) are block oriented mass storage devices. The data
is stored as blocks in sectors on the disk. The recording surface is organized as a series
of circular tracks broken up into equally sized sectors. Sector data holding capacity
varies from 128 bytes to J096 byvtes. The sector is the smallest addressable data block
on a disk drive.

There are three standard disk sizes: 8 inch, 5 1.4 inch, and 3 1 2 inch diameters.
The 8 inch disk is the oldest version and rarely used todav. The 3 1 4 inch disk is
currently the most common and least expensive, but the newer 3 | 2 inch disks are
gaining in popularity due to their ruggedness, compact size, and higher density,

The data and control fields on a disk are organized into a specific format. There
are numerous formats available, but the most common are IBM 3740 (single densitv)
and IBM System 34 (double density) compatible. The data and control fields of a disk
track in IBM 3740 format are shown in Figure 2.4.

The sector format consists of the sector address (track sector [D) which identifies
the track, sector, side, and length of the sector. The sector is accessed by stepping to
the proper track and reading addresses until the desired address is read. The sector
address is followed by a cyclic redundancy check (CRC) as an error check on the
address. The ID gap (GAP2) provides time for the disk controller to compute the CRC
for the address read and compare with the CRC read from the disk to ensure a valid
disk sector address has been read. The sector length field contains the number of bites
written in the sector, not the capacity of the sector; a 128 byvte sector with only 100
byvtes written in the the sector will have a sector length of 100. The sector address field
is followed by the data field with a data CRC error check. The post data gap (GAP3)
provides time for the disk controller to check the data’s CRC plus an additional bufler

space to ensure scctors do not overlap due to variances in timing or disk rotation speed

Bl oh o'y
- ee -0

< - .r?ffl":.

\, Tl 4 -

L,
v

Al

¢
'
»

P Il R
“\’N‘l)

N
]

-

-~ :
PR

W, et

4
)
+

B

s ; r s - "
e ";”\‘ .gr'."“,.’a‘ ‘\‘ LR W |'|'|.. AY. ..x'l.\ W ';‘A‘. MO N .'0‘\‘»"! e l‘.‘l NN W A P Y -- W,

WY I U T WU T VO OGO Y W U WU U W NN WO X0 0 W 0 O WY W OW OB e B 0 N MW KW =

INDEX

GRPL L, / GAP4

I SECTOR SECTOR SECTOR POSTAMBLE

GFP
(___.
Lm-—)té—m-—{

2
P e e el

INDEX

1D ADDRESS TRACK/SECTOR 1D DATA AUDRESS DATA CRC POST DRTA

— | 6 17 1 128 2 33—
BYTES ' BYTES

SECTOR
K— 1 1 i 1 2 -
I BYTE BYTE BYTE BYTE BYTES

Figure 2.4 IBM 3750 Disk Uormat.

1
L ;
i :
; ik
I : 2
2 i ;
[N
\P‘
o
g3l

The 1BM format uses special control characters to mark the beginning of some
ficlds. The index mark, ID address mark, and data address mark are special characters
that can not be written in normal data format. In these special characters some ol the
clock pulses are omitted to create unique codes that can not be duplicated in data. The
spectal characters are written only during the disk format operation.

The basic operation of the disk drive is relatively simple. The disk controller

instructs the disk drive to move (seck) the read. write head (head) to a specilic track
and loads the head, i.e. puts the head in contact with the disk. The disk drive starts
passing the information (rom the disk to the disk controller where the information is

cheeked for special characters, scctor addresses, and data. When the operation is

I‘a\“‘

..1"1* " ‘“"J' A -’\..‘v

IREPEILAGHCNINIY

complete, the disk controller unloads the head and waits for the next operation. Not all
disk drives follow the above sequence exactiv because newer disk drives have more
capabilities, but the sequence of steps demonstrates the basic disk drive operation.

Disk drives require a vaniety of sigrals to be exchanged with the disk controller
to accomplish head movement (secks) and read write operations. The tyvpes of signuls
exchanged are a function of drive tvpe and age. Older § inch disk drives require more
signals than newer 5 1 4 inch drives. To retain the flexibility of using a variety of disk
drives the disk controller must be capable of exchanging a {ull range of signals that can
be customuzed for the disk drive that is actually installed. The following signals are
representative of the signals exchanged between disk controllers and disk drives,
regardless of size or tvpe. All signals are asserted low unless otherwise specified.

e unit sclects (US1¥,....,US4*) - select one of four disk drives
e head load (HDL™) - instructs the disk drive to put the head on the disk surface

o low current track (LCT¥) - notifies the disk drive that the head is above track
43 so that precompensation can be used if needed

e [ault reset (FR*) - resets the disk drive’s [ault indicator

* write protect (WP*) - notities the disk controller that the disk is protected and
not writable

e fault (FLT*) - notifies the disk controller that the disk drive has a fault
¢ ready (RDY™®) - notifies the disk controller that the disk drive is ready
e ndex (IDX®) - index timing mark from the disk drive

* raw read data {RRD*) - composite read data from the disk drive

e write enable (WE?®) - instructs the disk drive to write

e write data (WDOUT?) - data to be written on the disk

® head select (HD*) - for two-sided disks, low selects head 0 and high selects
head 1

e double density mode (MEFM*) - instructs disk drives capable of single and
double density modes to use doubl~ density mode

¢ direction (DIR*) - tells the disk drive the direction tu move the head in
response to a step during seek operations. low = in and high = out

o step (STP*) - instructs the disk drive to move the hecad one track in the
specified direction

o two sided (TS*) - notifies the disk controller that a two-sided disk is installed
¢ track 00 (TROO*)- notifies the disk controller that the head is at track 00
As indicated in Chapter I, the IBM compatible 5 1.4 inch disk drives will be used
in the DCM de:gn. These drives were sclected primarily because they are rcadily

available and inexpensive.

[29)
n

11I. HARDWARE DESIGN

Previous chapters defined the interfaces and interaction of the disk control

Jr module (DCM) with the host svstem and disk duives. This chapter will present the :
¥

i mternal architecture and hardware design created to meet the requirements of the

hardware and software intertaces.

i‘o‘

é A. ARCHITECTURE]
t; A modular architecture will be used to accomodate changes in major external \
* interfaces with minimum perturbation of the DCM realization. The foundation of the

,:: architecture is a microprocessor-based central control unit (CCU) which provides

:: overall control and coordination of the DCM operation. The CCLU recetves commands

i(from the host via the host interface and translates these commands into the signals

p required, at the disk interface, to accomplish the required disk action. The external

“: interfaces and major component systems of the DCM are shown in Figure 3.1.

E', 1. Host to DCM Interface] :
g: The interface to the host system consists of three parts: ;
! e bus control - hardware interface to control DCM responses to host bus activity

::5 e host control - software interface for command and status exchange with the host ’

i:.: e data buflers - software interface for data exchange with the host -
:‘: The bus control section of the host interface enforces the host bus system phyvsical :
" protocols by providing physical control to the software interfaces.

: In Chapter II, the host software interfaces to the DCM were shown to be

:: reflected as memory locations in the host's global memory. The host operating svstem

pS views the DCM as a software module with specified command parameter and data

X buffer memory locations. To the host, the DCM appears and functions much like a ‘
COMDMON or global memory area in a program.

E:: The software module appearance is important to achieving the desired

i:' interface generality and flexibility. The host views the DCM as a simple block of

N memory, this view is consistent for all programs using the DCM and allows a broad

;‘,: range of operating systems to be accommodated. Flexibility is achieved by modifving :

‘:.'. the bus control section to comply with the selected host bus system protocol for simple

:S' memory reads and writes. This preserves the appearance of the software interfaces as .

4 the bus system protocols change.

, 26 g
i

Wi

N

’ 3
i 3

" -
NN
%Y,

!) ; ; N WA T e N e T e e e T T e T e '."‘.','.';»._u,‘ AT e ,:--,
.'6‘0’I.a,i A ,,"J .l'ln’..a l..",.’l,q".ts,. 1) ’.0 X 4 “ A ' * B Y A ” '. LAV I e 'ﬂ o A ', * v N WP i Y

< HOST BUS >

- = HOST INTERFACE = |[— — — — — — EXTERNAL
‘ INTERFACES
BUS HOST DATA |
CONTROL | CONTROL | BUFFERS |
I
DISK DISK
CONTROL DRIVE
]
ncM DMA 8
DISK e D
CONTROL CONTROL CONTROL & DRII?)';
z
-~
DISK v DISK
CONTROL 4] DRIVE
a
DISK DISK
CONTROL DRIVE

--C

Figure 3.1 Generalized DCM Block Diagram.

Incorporating the software interfaces in the host bus interface section and
treating them as buffer memories isolates the DCM internal control functions trom the
host. These software interfaces also appear to the DCM as a bLlock of memory,
analogous to the view held by the host. This memory appearance provides consistent
views of the host and DCM with respect to each other.

This organization of the host to DCM interface is used to isolate the internal
DCM control functions from the host system and to provide consistent views of the
software interfaces as seen by the host operating system and internal DCM control
software. The isolation of the DCM control functions provides relative autonomy to
the DCM while it is performing requircd tasks and allows the DCM internal
architecture and components to be changed without the knowledge of the host,

provided the host operating system view of the software interfaces is not altered.

2. DCM to Disk Interface
As seen in Chapter 11, the disk interface is rclatively simple. The interface
required for one disk drive is sunply replicated for cach drive to be used, four in this
case. -
~ The disk interface consists of TTL type receivers and transmitters to drive
control and data lines under the control of the disk controllers onboard the DCM. .
3. DCMI Internal Architecture
Figure 3.2 1s a more dctailed block diagram of the DCM rellecting the specific
target host bus, thc VMLE bus, and the host interface memory buflers. Internal

interfaces between major onboard sections are shown to illustrate a conflict in internal
bus usage.

¢ UME BUS ;>
UME BUS INTERFACE pata
UME BUFFER
BUS MEMORY CONTROL
CONTROL | CONTROL T 1
HOST DATA
DcHM CONTROL BUFFER -
CONTROL. BUFFER MEMORY
MEMORY MEMORY
DCM k T ccucosal Bus]
CONTROL l
<cclp B e I
DISK DISK
CONTROL DRIVE
ma | g
DISK N DISK
CONTROL. CONTROL i DRIVE
<DMAC> 5
(]
DISK DISK
CONTROL % DRIVE
) Q
DISK DISK
CONTROL DRIVE

[igure 3.2 DCM Internal Bus Contention.

R ORI 0 T3 PO I X NI W W Lo sy N L0 Py P P £y € L0 " Py PO M o)

Fafk Vol Vol Oo0 S 1 Tal Palo a0 T ol 2R toa 2ra dus g

g %

-

|

o

P e P

As indicated earlier, the DCM will be controlled by a microprocessor svstem.

Typical microprocessor systems have a single global bus conncecting all components to
the microprocessor; the svstem in shown in Figure 3.2 has the same property. This
single bus system may lecad to a conflict in the DCM application because two
component systems, CCU and DMAC, will be competing for use of the bus. This bus
contention ariscs any time a DMA operation is in progress and the CCU tries to access
the bus for program memory references or to set-up a disk controller for a data
transfer. This bus contention will degrade system performance, espectally with high
DMA usage. The contention can be reduced by splitting the CCU global bus into two
buses as shown in Figure 3.3.

This dual bus arrangement eliminates bus contention during CCU
conununication with the host coniroi buffer memory by separating the data flow path
and host command path into two sections:

e CCU local bus - accessed only by the CCU, connects CCU memory and those
components needed for host command receipt and not needed for
actual data transfer

¢ global bus - shared by the CCU and DMAC, connects those components
involved in data transfers

This bus arrangement allows host commands to be received and interpreted without
bus contention.

Bus contention will still occur when the CCU attempts to communicate with
the DMAC or disk controllers during DMA operations, but the impact can be
nmininiized by allowing the CCU and DMAC to share the global bus on a cycle-by-
cvcle basis. This bus sharing can be prioritized to ensure that disk data overrun docs
not occur.

The final architecture, incorporating the features described in preceding
discussion, is given in Figure 3.4. The five major sections are summarized as:

1. Host Interface
a. controls all communication between the host and DCM
b. appears to the host and DCM as shared memory
DCM Control
a. microprocessor system controlling overall operation
b. shares global bus with DMAC
3. Global Bus Control
a. arbitrates global bus access

ty

b. prioritized to ensure disk data overrun does not occur

29

UONOOUOOOEEONMOOOCIRNDOOBDOOOLON M b

La S0 0, RV RVa Rea A°A B A 8 B0 R 2 2.2 Aok Aol Bal Rat Rar Rol Bal Bal abofy’.

—— >

UME BUS INTERFACE DATA)
UME BUFFER
BUS MEMORY CONTROL
CONTROL | CONTROL T 1 .
HOST DATA
pCcH CONTROL BUFFER
CONTROL. BUFFER MEMORY
MEMORY MEMORY
bcH CCU LOCAL BUS
CONTROL
<ccuy GLOBAL
BUS GLOBAL BUS
CONTROL.
—-ﬂ DISK DISK
CONTROL. DRIVE
L)
DMA ‘
’—ﬂ DISK g DISK
CONTROL CONTROL H DRIVE .
<DMAC> pa
(]
=Y DIsk DISK
CONTROL é DRIVE -
‘ [=]
L prs« DISK
CONTROL DRIVE

Figure 3.3 DCM Dual Bus Configuration.

4. DMA Control
a. controls data transfer between disk controllers and data bufler memory
b. primary user of global bus
5. Disk Control
a. disk drive interface
b. controls basic disk drive operation
The remainder of this chapter presents the hardware realization of the above
scctions. The diagrams used may consist of functional blocks representing groups of

devices. Details of the functional blocks are provided in Appendix A.

30

RENEKRERE X RSN TR I R R R N A LA T N AR R A A A VIV W L Y URNU T Y RV MY YT NI N AR N AN " RS AL R

()
b
4
J
"
, S
!
< o< B D | -'
' !,
HOST -----7ST--"-"--"-TTTT-°--=-°-=- 1
INTERFACE ' |]
- t | VME BUS INTERFACE \ h
! (A
pem contROL_ _ _ | we BUFFER . ' J
. — BUS MEMORY L Ll ! ;-
) : , | | CONTROL | CONTROL !]
HOST DATA | ¥
! it R 1 | CONTROL BUFFER | 1
: ! 1 | BUFFER MEMORY | 1 ¥
! Lo - - - - - 1 v | MEMORY i .
: ccu e | oY
' LOCAL L | ¥l
! BUS] L - - = -]= = = = - -4 .
1
CONTROL
1 L === =°7 N
1] ‘f
1 L e '):
t | INTERRUPT ccu ccu ccus/pMAc | &
| CONTROL ROM RAM CONTROL | 1 ¥
\ MEMORY | 1 by
1]
L oot e e e m] = e e e m == e = - - - - ¥
r==-=j=-"=-"=-"==-=======- T em—— N T T - - =1 ';
SLBAL | LOCAL /GLOBAL ' <
ACCESS i | GLOBAL BUS BUS |)
CONTROL , | ARBITRATION INTERFACE , !
L & o e e e e e T T T T — - -4 :
ot
| i e I == =1 ‘t
| j 3
DMA | | DMAC BUS GLOBAL | .
CONTROL i DMAC CONTROL BUS | ;
\ CONTROL \ '
R i OO d
X
)
W
r-=-=j~=j-~=-=-{f-=~f--=-=j=-=}j=-=-=-“=j--j-- - a | Y
DISK ! t)
CONTROL 1 DISK DISK DISK DISK ' N
' CONTROL CONTROL CONTROL CONTROL |
| ' 1
IS DU P S .-~ 4 b
L]
DISK DISK DISK DISK
DRIVE DRIVE DRIVE DRIVE
. Figure 3.4 Detailed DCM Block Diagram. §

W WL W e W t
1
\J

wmmnmnmmwwmnww LR AD AL 2 A A 2l Al Al AR atl

B. HOST INTERFACE
The host interface will be treated as two general sections:

e soltware interface - the memory model of the DCM as seen by the host
operating systen, and

e hardware interface - hardware required to prescut the soltware interface to the
host.

1. Software Interface
Figure 3.5 provides the memory map of the DCM as vicwed by the host
operating svstem. The memory space presented to the host is an § Kilobyte block
organized as 10 bit words with addressing to the byte level in typical 68000 style

memory organization. [lost address bits A13 thru A23 are user sclectable to allow this

block to be mapped anywhere in the host's 16 megabyte address space.

UME BUS SIDE pen
WORD ADDRESS MEMORY MAP
A23-A13 A12 ALLAL e BYTE | Lower BYTE
SELECTABLE : :g DCM STATUS
g g SEMAPHORES
e ges DISK 1 STATUS
e eac DISK 2 STATUS .
e &9 DISK 3 STATUS
e e1d DISK 4 STATUS
e e18 DISK 1 COMMAND
e 218 DISK 2 COMMAND
e aoc DISK 3 COMMAND
e 606 DISK 4 COMMAND
. co NOT USED
L eee DISK 1 DATA
1 408 DISK 2 DATA
L see DISK 3 DATA
! ! cog DISK 4 DATA

Figure 3.5 llost View of DCM Memory Map.

L NUNVUFPUNU N UGN MM N N U Ay NUN U AN Y e e YR R B

The DCM memory block visible to the host consists of the host control and
data buffer memories of Figure 3.4. These memories are partitioned into smaller
functional blocks for the following uses:

e DCM status - four bytes representing the overall status of the DCM

e semaphores - one byte per disk indicating the availability of a disk for use (four
bvtes total)

¢ disk status - four byvtes per disk indicating the status of the last operation
performed by a disk (16 bytes total)

o disk command - 3505 bytes per disk for host commands plus one byte for
command present indicator (2024 bytes total)

¢ not used - two kilobytes reserved for command space expansion

¢ disk data - one kilobvte per disk for disk data storage (four kilobytes total)
The details of the partitioned block formats will be presented in Chapter IV with the
software development.

The command present byte in each disk command space is used to notify the

DCM that the host has an active command present for the indicated disk. This is
accomplished by generating an interrupt to the CCU when the host writes to the last
bvte location in the specified disk command space. The interrupt generation is totally
transparent to the host.

The memory operations that are supported in the DCM host shared memory
are:
e single byte (upper or lower) read. write
* word (double byte) read write
¢ block word read. write on blocks up to 256 bytes long
¢ uninterruptible read-modify-write cycle for semaphore support
Only the details required for hardware implementation of the shared memory

are presented above. The format and use of the software interface will be presented in

more detail in Chapter IV.
2. Hardware Interface
Figure 3.6 is an expanded view of the major sections of hardware used to

implement the software interface. The host control buffer memory and data butfer

memory are combined into a single dual ported buffer memorv module for simplicity.

- Each major block will be described below.

33

MYRAREARAANER AW ANFAR” AL

The devices shown for driving or recciving the signals are those recommended in the

VME bus specification. The following signals arc connected to special purpose devices

—
BUFFER MEMORY CONTROL
r--==-=-=-=--)
1 !
READ/WRITE [—
, CONTROL '
| !
. =
a , ADDRESS .
E ; COUNTER/ .
= \ LATCH ,
H | '
Q 1 ‘L !
3 \ COMMAND ,
W , INTERRUPT \
g , GENERATOR \
Py <4
r-=-=-==-=-=-=-==-= - "
| !
| MODULE _a BUS !
I ' PORT A
: T ' BUFFER MEMORY
1 !
! INTERRUPT | PORT B
! GENERATOR | !
i I
] UG P 4
UME BUS CONTROL
v
INTERRUPT INTERNAL BUS SYSTEM
CONTROL
Figure 3.6 llost Interface Block Diagram.

a. VME Bus Interfuce

Figure 3.7 shows the signals exchanged between the DCM and VML bus.

designed specifically to generate or receive them in VME bus applications:

BERR*
DTACK*
[ACK*
IACKIN®
[ACKOUT®

The special purpose devices are used in the bus control and interrupt generator sections

of Figure 3.6 and will be discussed in the design of those sections.
b. Buffer Memory

The host control and data buffer memories are implemented as dual ported
memorics with host access via port A and DCM access via port B. Figure 3.8 shows
port A of the buffer memories which implements the memory mup of Figure 3.5. The
host control and data buffer memories are separate, bvte addressed, dual ported
memory banks. The port B operation of these memories will be discussed as part of the
CCU and DMAC memory designs.

There is a wide range of devices available for implementing the dual ported
memories, {rom dual ported dynamic RAM controllers to verv fast static RAM devices
with onchip arbitration logic. The devices used in this design are Integrated Device
Technology, Inc. (IDT) static RAMs with onchip arbitration and a wait signal.

The IDT devices have an excellent speed range, from 25 nanosecond to 120
nanosecond cycle time, and onchip arbitration that allows both ports simultaneous
access to the memoryv matrix as long as the addressed locations are not the same. If
both ports attempt access to the same location, the winning port gains access and the
losing port has the wait signal asserted indicating a delay in access. The speed range is
desirable to allow the DCM to provide a range of memory performances to support
desired VME bus throughput versus cost tradeoffs with minimal changes in the
hardware.

The host centrol buffer memory is compaosed of two devices:

e IDT7130 - 100 nanosecond cycle time, organized as 1024 by 8 bit memory
locations with onchip arbitration and wait signal

¢ IDT7140 - 100 nanosecond cycle time, organized as 1024 bv 8 bit memory
locations and shares the IDT7130 arbitration logic

These devices are designed to work as master (IDT7130) and slave (IDT7140) to
minimize cost and complexity. The IDT7130 controls the arbitration and drives the
wait signal for both devices.
The data buffer memory is also composed of two devices:
¢ IDT7132 - 2048 by 8 bit version of the IDT7130
¢ [DT7142 - 2048 bv 8 bit version of the IDT7140
The operation of these devices is the same as for the host control buffer memory.

BUS SI1DE

UTILITY BUS

DCM SIDE

SYSCLCK ___| L__ SYSCLCK
SYSRESE T . SYSRESE T
DATA TRANSFER BUS
Deg—-1S5 ___] L DBB-1S
EN DIR
L___UPPER BYTE DIR
K_— URPPER BYTE ENx
D2R-27 | D227
EN DIR
(E LOWER BYTE DIR
LOWER BYTE ENx
AMB-S __| | AMB-S
RA1-23 __] L AB1-23
DSOx __ LDS%
DS1i%] t: UDSx%
ASw —T | ASNx
Rk }._ R/ W
LWORD» __] b
BERR BERR

DTACKx &——— DTACKx%

PRICRITY INTERRUPT BUS

INTRQ®1-7 __| °°O< — | 1rat-7
[
IACKX 5 TACKK
IACKINk S IACKIX
IACKOUT ¢ IACKO*

Figure 3.7 VME Bus Interface.

-

3
3
3

S e L=

i i stk alaa® (ah Tl Vg d ol ioF eah ol rafi Val Vel Sal Vel Vel 0ah ud Gab dgh o LD Rl B G Sa L A G SNl ol Vol fuk S0 S0 Sub o BA G G Sl

HOST CONTROL BUFFER MEMORY DATA BUFFER MEMORY
PORT A PORT A
r=-" =" ===-===""=====-=-=- i e A
]] [}
DS, .8 — , .
D(7..®> = | \
DATA SELk — , ,
CONT SELk — \ \
ACLL. . >
| 1)
] 1]
' |3 Ex 9 CGx |' |Ao-18 CEx A0 CEx| |}
' |UPPER BYTE LOWER BYTE ' luPPER BYTE LOWER BYTE !
! IDT7130 IDT7140 ! IDT7132 IDT7142 ! ;
] t]
\— WRIT® IO WAIT* 101 | _{WAITx 1,0 werTx 10| |, x
-7 -7 o7 -7
t t [}
4Rk oEx Ruwx 0Bk | [RA oEx Rk oEx|
1 {]
WELbw ! ! !
WELx ! ! !
oL _! ! !
oeLx ! } !
WAITx ! '
|]]
b e mm e e m - - et m e - A e e m e - m m e e e - - a = - Jd

Figure 3.8 Bufler Memory Port A.

¢. Module Sclect
The module select circuit, Figure 3.9, 1s used to decode address bits A 13

thru A23 and the address modilier codes AMO thru AMS to determine if the current

a
|
é

VME bus memory cvele is intended for this DCM,

The DCM will respond to standard address single byte word and block
word data transfers as described in Chapter 1. Program accesses, such as attempting
to read the DCM buller memories as instructions, will result in no respouse and cause
the bus timer to time out and assert the bus error signal.

The module sclect circuit generates two signals required by other circuits.
The module select signal (MODULE SEL*) indicates the user sclected address switches

match A13 thru A23 of the VME bus and the address modifier lines are set to standard

address data transfer. The MODULL SEL™ signal notifies the bus control section that
the current memory cvele is for this DCM.
The block transter signal (BLT) results when the address modifier hnes are

sct for a block transfer. This signal enables the address counter circuit to inciement the

LU APLP LY |

memory address as the data strobes change.

:J‘
CAALAAALL]

SE %3

o ’ ~ . o R ~ ~ v A ~ - L] %]
R L A S I WA O b g 0 g 0 S A 0y tha" o 2 % AT O P> e KK N A, AN OO0,

]

_ v

(O TYPE MATCHX

MODULE SELx
ADDR MATCHX ar=

EO%
ADDRESS
COMPARATOR
A23 ALl Bll | ~_ USER
A22 ______lA1@ Bl ~] appress
A21 | Ao9 BOS | ~_
AZO ______ {A@8 BOS __d SELECT
Al19 ______|r@7 Bav | - SWITCHES
A8 _______laes BOS ~
AL7 AS BOS | ~_
AIS _______lA@3 Be3 | ~_
Al4 __ |me@2 BB2 | ~_
A13 ______ lrot BO1 L _~_
EN v
TACK*

Figure 3.9 Module Sclect.

The module select circuit is disabled during interrupt acknowledge cycles
(IACK™ asserted). During interrupt acknowledge cvceles only the lower three address
lincs, AO! thru A03, are valid. IACK™ asserted disables the address comparator cireuit
and inhibits the assertion of MODULL 3SEL* This ensures the DCM will ignore
imvahd address lines.

d. Bus Control

The bus control section, [igurc 3.10, provides overall control to the host

interfitce hardware. This section 1s based on the Signetics 68172 bus controller chip

(BUSCON) which is a special purpose deviee designed to mect VME bus requirements.

. - N - " ’ ~ - . LS AR A ™
RS NS I ORI L MO bl N0 DO N I X LM D B M N KD s M NI O Y M M L S (3R a XY AR U8 A0 U U e A A (R

SIS 80 iaath S aTHAYE t0 ath ol Rl R a2

UDSx 68172
) | {pst SLUSELNx ONBOARD*
SYSCLCK —{CLK LDTACKNx | LDTACKN*
MODULE SEL* —|SLUNx LBERRN® | LBERRNk
RN | R/Wk
ASNK | ASNX
BERR* BERRN®
DTACKN
DENN*
DTACK* | do DDIR RESETNk | RESETx
o— | [
INT DTACKx

— UPPER BYTE DIR
UPPER BYTE ENx ¢

LOWER BY
. . w ER BYTE DIR
O
D. LOWER BYTE ENx

SYSRESETx
RESETx
- CCU RESETx

Figure 3,10 Bus Control.

The 68172 asserts the enable signal, ONBOARD, to the other interface
circuits if the MODULE SEL* signal is valid for two trailing edges of the clock. This
allows the address decoder circuits in the module sclect section sullicient tume, 62.5 to
125 nanoscconds at 16 MEz, to properly evaluate the current memory cyvele address.
The ONBOARD signal enables all other circuits, except the VMLE bus generator, 10
perform their tasks. The VME bus generator operates only during interrupt cyceles,
which do not require DCM sclection via normal addressing.

Data cnable and direction signals are gencrated in this section and are

shared between data transler cyveles and interrupt acknowledge cveles. The interrupt

Cof f L A S KAL A EIFeT 2 K] Ieded NS0 SalelafaGe oYl

B Pl Pl o i

Va2 x a1

D, %28 ‘a¥ vt €3 o daR ual B Vol Cof Aal valh Col vpl € taf Cup Cah el Sh R VR AR AR e T R R e e e R A e e A

acknowledge cycle uses only the lower byte of the data bus. This sharing allows only
one set of transceivers to be used.

Bus error (BERR*) and data transfer acknowledge (DTACK™) are
generated by the 68172 in response to signals from the timer in the read wnte control
section. The BERR* and DTACK* can be connected directly to the VME bus. The
DTACK™ is shared with the VME bus interrupt data transfer acknowledyge (INT
DTACK?®) by the wire ORing of the open collector outputs.

The reset signal (RESET*) is used to stop all host interface activity.
RESET* puts all major components of the host interface in a clear or nonactive state,
but the host interface remains ready to accept the next VME bus cvele. RESET# can
be asserted by the host via the VME bus reset signal (SYSRESET*) or by the CCU via
an internal reset (CCU RESET™*). The SYSRESET* immediatly resets all DCM circuits
and forces the DCM into a power-on reinitialization cvcle. SYSRESET* is asserted bv
the host as a last resort to recover from a catastrophic failure.

e. Address Counter|Latch

The address counter latch section, Figure 3.11, latches address bits A0
thru A{2 and increments the address during block transfer operations. This section
provides address lines to the memory modules and read. write control for memoryv bank
selection.

The circuit consists of a parallel loading 8 bit binary counter for A <8.1>
and four D flip-flops for A< 12..9>. The binary counter acts as a transparent latch
when the load input (LD*) is asserted and latches the input address when LD* is
negated, i.e. on the rising edge of LD*.

The LD* signal is driven low by ASN* going low at the beginning of the
memory cvcle and before ONBOARD* goes low. This is the state during A13 thru A23
decoding prior to DCM selection. When selection takes place, ONBOARD* will be
asserted forcing LD* to go high, generating the rising edge needed to load the counter
latches and D flip-flops. The LD* signal will not generate another rising edge until the
DCM is deselected and reselected to begin a new memory cycle.

Block transfers are treated as a continuous memory cvcle because ASN*
remains asserted through the entirc transfer. In this case the block transfer enable
(BLT) with DCM selection (ONBOARD®) provides a count pulse to the counter when
the lower data strobe (LDS*) is negated. This allows the address to increment between

data strobes. This circuit requires that the data strobe be low before the DCM is

40

—
=
"i
o
v

P LU 0 N 107 (BT A ™0 B TP o S MO o A % T o o M P Ml aT i ™ o ' ml g AP M M i AT

VMNEUWMNY MW AAMRNPENRNANRERME "N TR O D S WS WP WS s e

AcL2.. > Ac12..9> F173 ACL2. . L

8 BIT
BINARY

COUNTER
AB. . L

De-8 Q@8-

LDS* __________f——~\

BLT

ri PUP
ONBORRD —0—-90-‘—{ LD% Ctx

L.Dx%

ASNX —b&— re RESET*

Figure 3.11 Address Counter, Latch.

sclected. This is guaranteed by the VME bus specification which requires the data
strobes be asserted within 10 nanoseconds of ASN*® assertion, and the DCM sclection
delayv during medule sclect decoding, a minimum of 62.5 nanoscconds.

The counter requires a maximum of 27 nanoscconds to increment and
present stable outputs. The data strobes will be negated, high, for a minimum ol 30
nanoscconds. This cnsures the address is incremented and stable by the start ol the
next data transfer.

f- Read]Write Control

The read write control section, I'igure 3.12, generates the signals required

to access the dual ported memorics and terminate individual translers.
The read. write control signals are typical of most memory svstems. The
chip enable signals (DATA SCEL* and CONT SLL¥) select the proper memory bank

' based on A12; A12=0 sclects control memory and Al2=1 sclects data memory. The

chip cnable signals cnable both upper and lower bytes to be accessed in the sclected

memory bank. The read. write and output enable sclects the upper and, or lower byte to

.

»
»
~
W
Y
™
b

be accessed.

A

4

31

250

OGO S o e

"

»
i)
iy

C e
oo o~

oo oy

! w e w ee w E
N

e o e

5 P .
R N N AL

N

o

T e T -

MEMORY CONTROL LINES

ALy [
3)_ DATA SELx
rem
CONT SELw
ONBOARRD {rem
UnSw
WEU%
ol
WEL %
LDSx Yo ls.
=
ra
e
| —— []

DTACK/BERR TIMER

ONBOARDX (Y
o

SVDC
FL
2 :@r‘; 1uS ~ LBERRNx
Drsg o; L -
o
ez P as-
Q-
Q- LDTARCKN%
a. G
125 nS r ris
DS 4
ONBOARD |
WRITK ___jra ACLllyx%

Figure 3.12 Read Writc Control.

Normal ternunation of individual transfers is accomplished by the data
transfer acknowledge (LDTACK?®). LDTACK?* is gencrated if a vahd address s
sclected (ONBOARD asserted and address bit All clear), if the addressed location s
not busy (WAIT*® not asserted), and if 125 nanoscconds has clapsed since the data
strobe was asserted. Atl set selects the unpopulated portion of the DCM's memory.
The assertion of WATT® indicates the addressed location is busy. WALT* will inlubit
starting the timer until the WATT* signal is negated. The DCM can not respond to 32
bit data transfers (LW?* asserted) so long word transfers will inhibit LDTACK®.

42

' . o r n P U LT >
OO IR IR M R AM MMM IN RN i) OO SO IO L M X OO M B X l. M il ey '- T A

Sl o Walh 0.0 8.0 0,9 &8 1.0 .0 LA DA RO AALR LA A AL AR b Ak Al sk AL adl Rt

e m &2 2 A X8

PR S SN A Y

Abnormal termination is accomplished with the bus error (LBLRR*) signal.

LBERR* is asserted one microsecond after data strobe asscrtion if no valid address is
decoded or immediately if a long word transfer is attempted.
8. Command Interrupt Generator

-~

The command interrupt generator section, Figure 3.13, generates interrupts
to the CCU when the last byte in a disk command space is written to. These interrupt
bvte locations are (HEX):

o 1u8 for diskl
e 205 for disk2
e 302 for disk3
¢ 3FF for diskd

This circuit uses four D flip-flops as interrupt flags, one per disk, that

generate the interrupt requests to the CCU. The D flip-flops have asvnchronous preset

and clear inputs. These inputs arc used to provide timing isolation between the host

interface and CCU. The flag flip-flops are cleared during the interrupt acknowledge

oy v

cvcle from the CCU.

The flag flip-flops are set by the command interrupt address decoder. This
circuit decodes address lines A0l thru Al2 for the above listed combinations and
generates the flag set signals when they are written to.

h. VME Bus Interrupt Generator

The VME bus interrupt generator section, Figure 3.1d, sends interrupts to
the host via the VME bus. It can interrupt on any of the seven interrupt lines and
provides an 8 bit vector over the bus during the interrupt acknowledge cvele. This
circuit 1s based on the Signetics 681354 interrupt generator (INT GEN) chip which is a
special pu mose device designed for VME bus use.

The 68154 is a programmabte device that can be set to interrupt on any
interrupt level and more than one interrupt level may be used at the same time. The
CCU can also program part of the vector sent during the interrupt acknowledge cycle.
The upper seven bits of the vector are provided from a register within the 68154, the

upper five of these are provided by the CCU and the remaining two reflect A2 and A3

from the VME bus. The lowest bit is provided externally by the designer and is
normally Al. The lower three bits in the vector then represent the interrupt level being

acknowledged.)

D1CMDIACK*

D2CMDIACK*

D3CMDIACK

D4CMDIACK®
RESET%

WELX
WEL ok _]
AA1-12 |
ONBOARD __|

—

COMMAND | rnrax
INTERRUPT (RT3x
ADDRESS [RTaw
DECODER [INTix

—d

1

o
3
0

T
v

D1CMDIRQx*

D2CMDIRQ

L D3CMDIRQx

O———— DACMDIRGx

Figure 3.13 Command Interrupt Generator.

This arrangement allows the host to specify, as part of the command input,

44

where the users may be on different interrupt levels,

what level to interrupt on, and the upper five bits of the vector to be returned, when

the command completion interrupt is gencrated. This is tdeal for a multiuser system

o

)
’
3

;'q. b

© s winAla v e e N e il Al T Ya AR Vel 128 el Ga vag Ea Cob 68 a8 Bt bt vl 8eavh V5 a6 2% 2" i ¥ 2tk afL N2 alava g tat Bae Bat §,% a0 Il'.

e

)
¢
Py,
0 ASNx
- r=), IACK* fi
133154N IACKI* "
: GE! IACKO ¢
. LD<7..@> | LD1~7 IACKx LDSx ¥
INTGENDTACKx _{ LDTACKk IACKINK Aa1-03 4
RAGK | R/WX IACKOUTx IRQL-7 :
8 MHz _{ CLK DSx X
La<L> | RS ABL1-AD3 - X
INTGENSEL® _| CSDS* IRQX1-7 —__J—MQO— INT DTACKx J
— RESETx DTACK* .
BDL-7 DoR-07 .
BUFEN% (INT BUFENX
%)
%t
4
AB1 X
L]
RESET* *
¥
)
|
"
. 2
Figure 3.14 VME Bus Interrupt Generator. "
) The 08134 resides in the VMIE bus interrupt acknowledge daisy chain and ‘
will provide the interrupt vector if it has an interrupt active on the level currently being K
¢
acknowledged. If it does not have one it passes the interrupt acknowledge in (IACKI™) !

down the daisy chain with IACKO*.

The interrupt data transfer acknowledge (INT DTACK™) and data
transceivers for the vector are shared with the data transfer section as previously
discussed.

The RESET® input resets all internal registers and negates any pending or
active interrupt requests and IACKO®. The remaining inputs are from the CCU and

will be discussed in the DCM control section.

C. DCM CONTROL
The DCM control section excrcises control over all other sections. This is
accomplished by the CCU, which programs the major devices in cach section and

inttiates their actions. The DCM control section is based on a 068000 (CCLY)

AT RS NTRTS M AT,

microprocessor svstem. The general arrangement of the DCM control section in
relation to the other sections is given in Figure 3.13.

The 68000 treats all external devices as memory. The external devices such as
memory, disk controllers, and interrupt generators are combined into the blocks labeled
local devices and global devices in Figure 3.15. These devices share the same type
control signals driven by the bus to which theyv are attached. The local devices are
those that are accessed by the CCU on the local bus and the global devices are those
that are shared by the CCU and DMAC on the global bus.

This arrangement was selected to allow simple addressing of all devices wiid to
provide a common address space for global devices as seen by the CCU and DMAC.
Since there are two buses that may be in use at the same time, there will be two
separate bus control sections:

¢ local bus control - consists of local DTACK, BERR section and local memory
control section

o global bus control - consists of global DTACK/BERR section and global
memory control.

The bus control sections are independent to allow both busses to operate
concurrently, but share common addresses for the global devices. The internal memory
map, as seen by the CCU and DMAC, is provided in Figure 3.16. The CCU can access
all devices on either bus but the DMAC can access only devices on the global bus. The
lower thirteen address bits for the global devices are the same in the CCU and DMAC
address spaces. The common address space for the global devices is required to allow
the same address decoding when accessed by the CCU or DMAC.

1. CCU Local Memory

The CCU local memory devices are shown in Figure 3.17. The local meniory
consists of the host control buffer memory (port B) as previously discussed, a shared
memory between the CCU and DMAC (DMACRAM port A) which is a dual ported
memory like the host control buffer memory, eight kilobvtes of ROM for internal
control software, and eight kilobytes of RAM for CCU scratch-pad use. The ROM and
RAM memories are not specified since any generic devices of the proper size will work.
The onlv requirement is that the memories have access times less than 2350
nanoseconds to allow zero wait state operation.

The DMACRAM dual ported memory is used to minimize bus contention
when the continue or array modes of the DMAC are used. These modes allow multiple
block transfers by putting the block sizes and limits in memory accessible by the

46

P T T S T R TR N NN FEVRIUOY RIOUT RO UV T U OV WU R UW R URCER ROV WU ™ 0 04 O RO U R r.erMM’g
]

Figure 3.15 DCM Internal Organization.

LOCAL DTACK/BERR LOCAL
DTACK/
R ccu BERR
DMA IACK®
. LOCAL DATA BUS
LOCAL ADDRESY BUS
LOCAL CONTROL | BuS
LOCAL. GLOBAL BUS -
:]: DEVICES RCCESS CONTROL
INTERRUPT LOCAL
CONTROL MEMORY
I CONTROL
DI
oo
IROw/ IACKR
- m™A IR
GLOBAL
) MEMORY
CONTROL
GLOBAL.
é DEVICES
DMAC E GLOBAL CONTROL BUS9
r4
| 8 GLOBAL ANDRESS BUS
i g GLOBAL DATA BUS
, GLOBAL DTACK/EERR -
g GLOBAL
; DTACK/
‘: BERR
' R IACH '
; T i
3

47

S5 S S0 5

O3 TN R N, S R S S R T S T R S R St R R S S A R AL L G R L 8

W M CUTNL WL W WL WO e e W WIS SR T

DCM I TERNAL MEMORY MAP
re oo o
BY HEQRESS BYTE ADDRESS ’
(e CHEX>
220082
CCU ROM
@OIFFF
224008
CCU RAM
@BTFFE
Pe8CdD
CCU/DMAC SHARED MEMORY
2RS7FF
IZXTTT 7T T 77777777
QocoP8 | HOST CONTROL BUFFER MEMORY
IZXTT 77T 7777777777
212999 | UME BUS INTERRUPT GENERATOR
I7X 77777777 777777
214000
BL41FF orAc
AT T 7T T T 7T T I T T T 7T
815090 1009
DATA BUFFER MEMORY
BLSFFF LFFF
016000 2000
DMRC/CCU SHARED MEMORY
@LE7FF 27FF
IIXTI 777 77T T T T T
217208 DISK L 3000
017602 3ea2
TIX 77T 777777777777
017460 —— 3422
017402 3482
o17ela e A LI LTI T T T T 77777
7€ 3600
B17€02 DISK 3 3802
X T T 7777 7T I T T 7777
817C0D DISK 4 3con
217¢C82 32

Figure 3.16 DCM Internal Memory Map. :\

o

DMAC. This allows the DMAC to move blocks of data without CCU intervention.
The CCU can put the parameters into this memory via port A\ and the DMAC can f::«

retricve them via port B with no bus contention. If single ported memory is used, the

% N
| 2 4
o ¥ 95

DMAC would need access to the local bus and contend with the CCU for access. This :;q
would reduce throughput as discussed carlier. ‘ g‘\

The VME bus interrupt generator (68154 INT GIEN), CCU control side, is :
shown in [Figure 3.18. [t is treated as a two word memory block in local memory but Pl

48

S K] ™

DMACRAMARI T
‘ CONTMEMWAL TR
DMACRAMSEL %
CONTMEMSEL %
LALLe. . 1)
AZ8 CEx A9 CEx B CEx Ae-8 CEX
UPPER BYTE LOWER BYTE UPPER BYTE LOWER BYTE
I0T7130 IDT7148 IDT7130 1077140
L {wAIT% 1,0 WAIT% 1,0 L{WwAIT* I, WAIT® I/0
&7 -7 -7 -7
Rk OEx Rk OEX RAK OEX R OEX
WLk
WEL*
oELk
OELX
LD¢7. . @
LD¢1S. . 8)
oE% oEx RAGK OB RAK OEX
UPPER BYTE LOWER BYTE UPPER BYTE LOWER BYTE
ROM ROM RAM RAM
) 1,0 1/0 1,9
-7 a—7r— e-7— e H
ALZ-B CEX ALZB CEx AL2—B CEx ALZ-B CEx
LAC13.. 1> It B J |
ROMSEL X
RAMSEL &
]
Figure 3.17 CCU Local Memory.
only the lower byte of each word is used. The 68134 has two internal registers, RO and
R1, that control interrupt operation. R0, LA < 1> =0, is the interrupt vector register
which contains the upper five bits of the interrupt vector to be provided (o the host via

the VMT bus during interrupt acknowledge cycle. The lower two bits of RO are used to

enable all interrupts and resct all interrupt levels. RI, LA< 1> =1, is the interrupt

request register, setting bit n in this register generates a level n interrupt on the VME

. bus. The interrupt request bit will be reset when the host acknowledges that iterrupt
L

lev

68154
INT GEN
LD<7..®> __4 LD1-7 IACKx
INTGENDTARCK*] LDTACKx IACKIN%K
R/ANK — R/kx IACKOUT»
8 MHz | CLK DSx
LA<L> — RS AB1-RA3
INTGENSEL® — CSDSx IRO%1~7
RESET% DTACKw
BD1-7
BUFENX

RESETx

Iigure 3.18 CCU Control of VME Bus [nterrupt Generator.

2. CCU Support Circuits
I'igure 3.19 shows two support circuits not shown in prior diagrams. These are
the clock gerverator circutt, which provides all internal clock signals, and the reset
generator, which provides the internal CCU reset signal.
~ The clock generator circuit is a simple binary counter that divides the 16 Mz
mput by 2, 4, § and 16 to produce the indicated outputs. The 16 Mz, 8§ MII/, and 4
MI1z outputs are used as the timing signals (or the other sections.
‘The reset circuit can be activated in four wavs:
* SYSRESET* from the VME bus dircctly gencrates the internal CCU resct
¢ manual resct from a switch to reset the DCM without affecting the host
® power on reset to initialize the DCM when power is first applicd

e softwarc reset initiated by the 68000 reset instruction to reinitialize all DCM
circuits exeept the 68000

‘The SYSRESET* and manual reset arc provided to recover from a
catastrophic failure and are usced as a last resort. On reset the DCM reinitializes itself
as if power was first applied and all data and commands are lost. The power on resct is
a simple timer to provide @ (00 millisccond reset pulee alter power is first applicd to
initialize the DCM for initial operation. The soltware resct provides a means for the

internal control software to initialize the hardware without resetting the 65000,

30

s o S

-

T XSS 2P

P

NN

3 o
2.

MANUAL. RESET

POWER ON RESET

NESSS

SYSRESET%

HALTx <658208>

RESET* <68208>

CLOCK GENERATOR

SUDC
z_a(ij LSI6L
1 Mz
TTL 0SC He Sfeim
16 MHZ —D, Q, [—4naz
10w Qq— 8tz
ouT 16 Mz >
—1 R —
-] kY
LD Q.
16 Mz

3. CCU Bus Control

Figure 3.19 Clock Generator and Reset Circuits.

The CCU bus control section generates the signals required for the CCU to

access all devices on the local bus and initiate requests for the global bus. The control

signals are tvpical memory controls since all devices are treated as memory by the

68000, The CCU bus control section consists of a local memory control section and a

local DTACK/BLERR generator section. The memory control circuits are shown in

I'igure 3.20,

The memory select circuit decodes local address bits 14 thru 16 to gencrate the

device select enables. The device enables are used to enable the individual devices for
rcad or write operations with the CCU. The global bus request (GBUSREQ™) 1s also

gencrated here when the address bits are 101 respectively, this is the address space of

the global bus devices in the CCU memory map.

51

T &) ! s " = 1 ’ BV B " ~ 0~
B S N S RN T A S S TS S R S NS S NS OB D O S O O I S DGO B OO O e M L R

I PR B h R Rt R
\.l.ll, .u. s .o.

o

< " ’ i ¥ [0 RN LAY
SRR TP AT R SOTLM MDA ISAL S PLUITRM A TUB TOM R B P P R ol i

TR N O TR O U O T AT S R A U U DS U U UW ST OV LN WS SR Ut AV Ty n o RUL TS VL Uy b0y) Ve 20 WA R AN AL A R AR

MEMORY SELECT

GBUSREQx

LACLG. . 14> INTGENSEL %
gONTMEHSEL*

*
RAMSEL %
ROMSEL x
a.x
ASx
READ/WRITE CONTROL
UDSx —

OELbk
L=
o MC
OFEL %
LDSx% Q==

]

Figure 3.20 Memory Control Circuits.

The read write control circuit generates the output enables (OEU* and OFL™)
for read operations and write enables (WEL* and WEL*) for write operations. The
output and write enables are asscrted on a byte basis to allow byte and word
operations with the sclected device on the local bus.

For global bus devices, the GBUSRLEQ™® is a request to the global bus access
controller for global bus access. The memory control signals mentioned above do not
take part in accesses to global bus devices. The global bus control <ection provides the
control signals required for global devices and functions the same as the local bus
controller.

The local DTACK BERR generator is shown in Figure 3.21. This circuit
ternunates local data bus translers (LD IACK?) and gencrates the local bus error

(LBERR®) signal if an crroncous address is referenced. This circuit uses a shift register

'h
ro

» ; . (P ‘ol 3 - . ARy v
X ‘q“ O.UI.- AR DGO K TN N A

v

NS00,

PR O E RN

SR AR

o o P |

= A

YT AT TN RSO R SO N A OO R R A U OV O S Y RN WA A Y UV YN UV ARG/ USROGV

as a timing device to provide the access time required for the memory devices, 250
nanoscconds, and a 2 mucrosccond time out to indicate that an unpopulated part of
memory was referenced. The timing signals are combined with the device selects to

allow the use of devices with various access tnes.

’ ‘il GDTACKx
R Lo
3
]
4 INTGENDTACK
:' l LIB4
. ‘ Coa INTGENSEL %
LOTACKK Lose | DMACRAMSEL %
| RAMSEL %
| CONTMEMSEL %
‘ | ROMSEL
!
F_GBERR)O:
. LBERRx !
R
. S !
vz L Q30
I‘ Q’_
‘t Qgf—
4 o onS
i UDSx o Os|— 250n
! LDS* _]
OMACRAMWAT T
CONTMEMWARI Tk
GBUSREQx
* Figure 3.21 Local DIACK. BLRR Circuits.
‘
]
: During CCU accesses to the global bus, the CCU and DMAC mav be
;: contending for control of the bus with no tixed time for the CCU to gain control. This
4
. means the timer in Figure 3.21 can not be used to terminate the transfer. In this case,
X the CCU waits by asserting GBUSRLEQ® which disables the timer and enables the
L)
:‘ global data transfer acknowledge (GDTACK?®) and global bus error (GBUSLERR™)
M . mputs to the LDTACK® and LBERR™ circunts. The GDFACK ™ and GBERR® can not
N
' 53
; :
1 -
1 o .
“4‘,’: 1, l’r“\."" "‘."l."'-."h.?'\'.h .‘q'..-\ 2N J..‘u..o ..n.. .\". \. » "‘““.;\R o N‘ ." ‘.'ﬁ' . ‘I“‘.'.“‘-.--“.. ‘-"l“'\ \-'\'V--(‘\‘\.“' ““"-{." ‘-".'" - \"\.l\

UV PN UL TN U LAV UV UG A TUAT Y U LU UM WA BT AT T RRTANRT AT AT RA LR A

be asserted on the local bus until the CCU has control of the global bus. ‘The
GDTACK™® or GBERR™* will then terminate the transfer after the CCU has control of
the bus and the sclected devices have had enough time to respond.
4. Interrupt Control
The interrupt control scction prioritizcs interrupt requests, generates interrupt
acknowledges and provides mterrupt vectors for those devices that do not provide their
own vectors. A sunmumary of the wterrupt codes used is provided i Table I and Ligure

3.22 shows the circuits that generate these codes.

TABLE 1
INTERRUPT CODES

ACKNOWLEDGE VECTOR
INTERRUPT ENCODED ADDRESS NUMBER ADDRESS
SOURCE ~ LEVEL IPL(2..@>% LAa. . 1> <DECH CHEX)

X DMACIRG® S o110 101 DMAC WILL PROVIDE
K D4CMDIRQx* 4 211 190 68 118
4 D3CMDIRG* 3 109 211 67 iec
K D2CMDIRO* 2 1e1 210 56 108
#
&
3 There are two types of interrupts provided for in the DCM:
)
K e command present interrupts (DICMDIRQ*-DACMDIRQ™) generated in the
3 host interface as previously described
N e DMAC interrupts (DMACIRQ™) which include interrupts generated by the disk
A controllers
!‘: The DMAC 1s configured by the CCU to provide interrupts and vectors on
K completion of DMAC operations or in response to disk controller interrupt requests.

The CCU configures the DMAC, via soltwarce, by wiiting interrupt vectors into the
e
' interrupt vector registers in the DMAC for cach of the attached disk controllers and by
) . . PR N . .
! cnabling disk controller interrupts. This allows the DMAC to consolidate the four disk
k)
1' controllers interrupt request lines into a single interrupt request line and provide a
, unique vector for cach disk controller.
’ Interrupt requests to the CCLU are prioritized by the interrupt priority encoder '_ﬁ
3
b with DMAC interrupts as the highest prioritv. DMAC interrupts are the highest ‘.{
» N
- R
o .".:
]
54 o~
s! ‘N
b N
; A
9
z ~
: -
l‘\ Nl
) \'
> . . L~ P W PLIA LY LPE U RN W T e O RV Y) R A AL R P S LN
“i"?"'w.. W LAY NS t'!'t'l‘!’l’. O'A."..a o000, 008,900, 0 HRN o uo“ 000 Yot .0- o, iy, Wy 00y o0 ! Vo 3%, "%

TWURU WL WU WU WU W WU WU WU YUVY WU WU WL WU N VY

A3
A2
Al

ASx

DMRCIR%K*

INTERRUPT

PRIORITY ENCODER

DMAC TRQx
DACMDIRG¥
D3CMDIRQx
D2CMDIRGx
DiICMDIRG»

INTERRUPT _VECTORS
<EXCERPT FROM DMAC)

sVIC
a.a(ﬁ
A7

i EQ%?

LS3I7I

By Qy
Dg Qal—
D Q

0} olf
Ds Qal—
D; Oz
Dy Q-
De Cel
€ o

INTVECENX

IPL2%
IPL1x
IPLB%

DMACTACKx

D4CMDIACKX
D3CMDIACK*
D2CMDIACK
D1CMDIACK%

LD<?7..®

[igure 3.22

Interrupt Control Circuits.

priority because they indicate a data transfer termination and will release assets necded
for a new command. The command present interrupts are prioritized in the hardware
to allow easy differentiation between them during interrupt acknowledge cycles. The
interrupt handling software treats the command present interrupts equally, first-come,
first-served.

‘The interrupt acknowledge circuit decodes the interrupt level being
acknowledged, LA <3..1>, to generate the individual interrupt acknowledges required
to put the proper vector onto the data bus. The command present interrupt
acknowledges (DICMDIACK*-D4CMDIACK™*) to the CMD present flip-flops reset
the flip-flops gencrating the interrupts to ensure that a command is recognizes only
once. The DMAC interrupt acknowledge (DMACIACK?*) enables the DMAC to
provide the interrupting disk controller’s vector and inhibits the interrupt vector circuit.

The interrupt vector circuit is used to provide the interrupt vectors for the
command present interrupts. The upper five bits of the vector are fixed to 01000 and
the lower three bits differentiate between the individual command present interrupts.
This circuit is disabled during DMAC acknowledge cycles because the DMAC provides
the vector.

D. GLOBAL BUS ACCESS CONTROL

The global bus access control section coordinates the orderly access of the CCU
and DMAC to the global bus. The CCU and DMAC function as global bus
MASTERS, driving the global bus address and control lines and controlling data line
direction, when theyv have control of the bus.

Global bus access follows the 68000 bus arbitration protocol. The 68000 bus
arbitration protocol is a three signal handshake (request-grant-acknowledge) protocol
that ensures only one bus MASTER is given bus control at a time. A MASTER
requests bus access by asserting a bus request (BR*) to the bus controller (68000 or
cxternal control unit). The bus controller asserts bus grant (BG*) to the highest
priority requester which indicates that the requesting MASTER may take control of
the bus when the current MASTER relenquishes the bus. The requesting MASTER
then monitors the address stable (AS*) and bus grant acknowledge (BGACK®*) signals
to determine when the current MASTER relenquishes the bus. AS* negated indicates
that the current bus cvcle is completed and BGACK* negated indicates that the
current bus MASTER has released the bus. Aftcr AS* and BGACK* are negated by
the current bus MASTER, the requesting MASTER asserts BGACK™ and becomes the

56

A28 A0 AR Y AR B8 LB AN B0 Ro¥ BV Ba® Bab Dot R R RAt R4

Nk

3
2

N

x4

G

g
g

YRl Y@ AR Vol NG a0 Wb Vol W8 3.0 Vuk SR Gl Bl Tul ThEk Tl Ak il Al R Ra iRl AR Rt

new bus MASTER. After asserting BGACK?®, the new bus MASTLR ncgates its” BR*
which causes the bus controller to negate BG* and star: a new round of arbitration. A
new round of arbitration can not begin until the new MASTER’s bus grant is negated
and bus mastership can not change while bus grant acknowledge 1s asserted.

The DCM's global bus access is controlled by two circuits:

e global bus arbitration circuit which determines which unit, CCU or DMAC, will
be the global bus MASTER

¢ Jocal global bus interface which connects the CCU local bus to the global bus
when the CCU gains access to the global bus

1. Global Bus Arbitration

The global bus arbitration circuit is shown in Figure 3.23. The arbitration is

prioritized with the DNMAC global bus request (DMACGBR?*) as the highest priority
and the CCU global bus requests (CCUGBR™) are recognized for single cvcle transfers
only. Making DMAC global bus requests the highest priority and limiting the CCU to

single cycle global bus transfers ensures that the DMAC can gain global bus control in

time to service data transter requests trom the disk controllers without disk data

overrun.

Global bus arbitration is performed by the Motorola 68432 bus arbitration
module (BAM) which can prioritize up to eight potential bus MASTLRs and follows
the 68000 bus arbitration protocol described above. The BAM can be configured to
operate in a local bus arbitration mode or a global bus arbitration mode.

In the local bus arbitration mode the BAM is used to prioritize bus requests

for a 68000's local bus by passing the highest priority bus request to the 68000°s bus
request input and returning the 68000°'s bus grant output to the highest priority
requester. The bus grant acknowledge signal from potential bus MASTERs are shared
by the 68000, BAM, and all bus MASTERSs to complete the bus arbitration handshake.

In the global bus arbitration mode the BAM serves as the central bus
controller with no need to request the bus from a 68000. In this mode the highest
priority bus request is passed directly from the BAM's bus request output (BR*) to the
BAM’s bus grant input (BG*) after a 50 nanosecond arbitration delay. The arbitration
delay is required because there mayv be spiking on the individual bus grant output
signals (DBGO*-DBG7*) during arbitration if multiple bus requests arrive at the same
time. The spiking and arbitration will be resolved within 50 nanoseconds so delaving
the BAM bus grant input will ensure that the individual bus grant output signals will

not be asserted until arbitration is complete.

57

HAERUMINNU MU AU O MU NN NN Y MV RN R N NG W W W FrFuAMRERaRum)

BUS GRANT DELAY
DURING ARBITRATION

o I |

DMRCGBR%
DBR7x DBG7x% DMACGBGx

CCUGBRx _I

o]
2
*
=]
|5
Q
-
*
FErrTTi

2. g DBR@% DBCG@x%

DMACGBGACKx

2. CCUGBGRCK*

CCU BGACK
_ FLIP-FLOP CCUGBGx
p™a)

LS74

8
CCU RS > G N

CCU LDTACKk

Figure 3.23 Global Bus Arbitration Circuit.

In the DCM, the BAM is configured for the global bus arbitration mode and
acts as the central bus controller for the DCM's global bus. The DMAC global bus
request is given top priority, level 7, and the CCU global bus request is given priority
level 6. The remaining priority levels are not used. DMAC global bus access is handled
in a straightforward manner in accordance with the previously described 08000 bus .
arbitration protocol because the DMAC has onchip bus control circuits that follow the

68000 protocol and allow the DMAC to function in a multiple bus MASTER

D T R T, A R I O T N L A T T AR R A L A K R A T T A AN W WM UM YU Y

environment. CCU global bus access requires additional support circuits because the
68000 is designed to be the central bus controller, relenyuishing the bus when required.
and does not directlv generate the bus request and bus grant acknowledge <ignals
required for requesting the bus from another bus controller and holding the bus in a
multiple bus MASTER environment. The additional support circuits for handling CCU
global bus access are shown in the lower part of I'igure 3.23.

CCU global bus requests (CCLULGBR™*) are generated in the local memory
control section, as previously described in Figure 3.20, when the CCU addresses devices
on the global bus. The BAM receives the request and will assert DBG6* in respense if
the DMAC is not using or requesting the global bus. Asserting DBG6* will generate
the enable (CCUGBG™) to the local global bus interface that connects the local bus to
the global bus and allows the CCU to drive the address, data, and control lines of the
global bus. DBG6* assertion also enables the clear input of the CCU BGACK 1lip-flop.

The CCU BGACK flip-flop is used to generate the CCU global bus grant
acknowledge (CCUGBGACK®) and limits CCU accesses to the global bus to single
cvcle transfers. In the normal state, when the CCU is not using the global bus, the
CCU BGACK flip-flop is set, negating CCUGBGACK™ and allowing norinal operation
of DMAC global bus transfers. When the BAM asserts DBG6*, indicating that the
CCU is the current global bus MASTER, the clear input to the CCU BGACK flip-flop
ts enabled. Clearing the CCU BGACK flip-{lop indicates that the CCU global bus
transfer is ternmunating and as a result CCUGBGACK™ is generated. The CCU BGACK
flip-flop will be cleared when the addressed dcvice asserts data transfer acknowledge
which generates CCU LDTACK™*. Asserting CCUGBGACK?* causes the BAM to
negate DBG6™ but the CCUGBG™ will remain asserted until the CCU global bus
transfer is completed. The final step in a CCU global bus transfer is the negation of
CCU AS*, which indicates that the transfer has completed. Negating CCU AS* sets
the CCU BGACK flip-flop which negates CCUGBG* and CCUGBGACK®,
completing the handshake and enabling a new round of arbitration.

2. Local/Global Bus Interface

The local global bus interface circuit, shown in Figure 3.24, forms a

connection between the local bus and the global bus when the CCU has control of the

global bus. In this case the address, data, and control signals are allowed to pass

between the two buses.

—w

A /A S Wl MR Sal Guh B Rb A i Al Rk T Rk Eak Ral

LOCAL BUS GLOBAL BUS
L%ﬁ
A B
LD¢?. . 2> > GD(7..®>
DIR E
L.S‘_2=45
LD¢15..8> AN B GD<15..8»
DIR £
R/7Wx [\%. GR/ W%
ASK R\E GASK
UDS* 1\3 GUDS*
LDSx J[% GLDSx
GDTACK*
GDTACK% o—
el O)
GBERRX
GBERRX _____OCO'_
[E-. -] O—o
LAC13. . 1> {% GAC13.. 1>
!
DMACIACK DMACIACK%
CCUGBGx f

Iigute 3.24 Local ' Global Bus Interface Circuit.

o0

Fd

';'r‘"._{.-‘-

LA™,
LN

2

o L

Wy y]T mlsess] T 7

LR R NN TR TN ROOTA A TAN R ARAR AN ANAN A LR U AU AGAN MR UAVTTRARG AT B R AT R Rt A A W0 AW T A A R

When the CCU is the global bus MASTER, CCUGBG* is asserted and the
CCU is enabled to drive both the global bus address lines (GA < 13..1 >) and globul
bus memory control lines (GR W#*, GAS*, GUDS*, GLDS*). In addition the CCU
can drive or receive the global bus data lines (GD < 15..8§>, GD <7..0>). The global
bus data transfer acknowledge (GDTACK*) and global bus error (GBERR®) are
enabled by CCUGBG™ in order to be passed to the CCL to terminate the CCU global
bus transler.

The DMAC interrupt acknowledge signal from the CCU (DMACIACK™) to
the DMAC passes through the local global bus interface to ensure that the DNAC
does not receive the DMACIACK* signal while the DMAC is the global bus
MASTER. If the DMAC were to receive the DMACIACK® signal while in the
MASTER mode, the DMAC would terminate its current bus cvcle, before completion,
with an error and attempt to respond to the interrupt acknowledge with an interrupt
vector. Gating the DMACIACK? signal through the loc.l global bus interface ensurcs
the DMAC is not in the MASTER mode when DMACIACK®* is asserted because the
DMACIACK™ signal will not be put on the global bus unless the CCU is the global
bus MASTER.

E. DMA CONTROL

The DMA control section controls data transfers between the disk controllers
and data buffer memory. These transfers are via direct memory access (DMA) under
the control of a Motorola ¢8450 direct memory access controller (DMAC). The 684350
can accept up to four DMA devices and has a built in bus controller to allow it to
assume bus mastership when controlling the data transfers between the DMA devices
and memory. Once the OMAC is programuncd by the CCU, the data translers wiil
take place without further CCU intervention.

The DMAC is programmed by writing the transfer parameters into a set of
internal control registers, 17 registers per attached DMA device plus one general
control register. The DCM’s internal control registers select the mode of transfer,
addressing to be used, priority level, and interrupt vectors to be returned on transfer
completion.

In the DCM, the DMAC is configured for the cycle-steal mode with implicit
addressing. The cvcle-steal mode causes the DMAC to relenquish the global bus if no
data transfer requests are present from the disk controllers. This creates gaps in the

data transfers so the CCU can gain access to the global bus to initiate transfers with

ol

D)

% g ’ - -y L.} LT ALV WAVES ¥ ‘ol . AN e ™ L Wi Wy N
SRS M Hﬂl."),.\ WA RO O S OGO OB O - ? AN L RO RO B ¢, .‘ Wnt, Gy, W, N V NN

B TR M U TSRO PN U NANENRIRNENTNAS ANRA RN AANRINN S U UM W o o MK R MR MU AN N AR TN e T W Ty

. idle disk controllers. Implicit addressing is used to allow single cvcle operand transfer
operation, when a single read or write cycle can move the operand from source to
destination. In implicit addressing, the DMAC provides a single address, the address of
the memory location in the data buffer memory that is the source or destination of the
operand. The DMA devices, disk controllers in this case, are not directly addressed but
are controlled by the DMA request and acknowledge lines. In explicit addressing, the
DMAC would address the operand source, read the source operand into a holding
register, address the destination, and write the operand into the destination. This
, requires two memory cycles, a read cvcle followed by a write cycle.
Figure 3.25 shows the signals used by the DMAC to control the global bus and
: DMA devices. The DMA device contro!l signals allow the DMAC to control data
transfers with DMA devices without explicitly addressing them as in a normal memory
reference cycle. The data address demultiplex control signals are used to control the
source of global bus signals when switching between the CCU and DMAC as a global
bus MASTER. The DMAC global bus request, grant, and acknowledge signals follow

e the 63000 bus arbitration protocol previously discussed. The DMAC interrupt request
':: (DMACIRQ*) and interrupt acknowledge (DMACIACK™*) signals follow the standard
;: 68000 vectored interrupt protocol.

; The DMAC operates in two modes with the direction of the global bus control

lines determined by the mode of operation:

* MPU mode - the state that the DMAC enters when the chip is selected
' (DMACSEL*) by the CCU in which the DMAC's internal registers are read or
i written by the CCU to initiate a data transfer or check status

¢ DMA mode - the state that the DMAC enters when acting as the global bus
» MASTER to perform an operand transfer with the disk controllers

In the MPU mode, the DMAC acts like a CCU slave device with the CCU
reading or writting the DMAC internal registers. In this mode the global address lines,
GA <7..1>, are inputs that sclect the DMAC internal register to be operated on and

;.:“ the global data lines, DMAC<AS8 D0-A23,D15>, are inputs or outputs for the {
‘: operand transfer. The memory control lines (GAS*, GR W* GUDS*, GLDS*, !
“ DMACSEL*) are inputs used in the normal 68000 memory access protocol. The

;'" DMAC data transfer acknowledge (DMACDTACK™) is an output to indicate to the

X CCU that the transfer is complete. \

1‘.; In the DMA mode, the above signal directions are reversed because the DMAC)
a: is providing address and control signals as the global bus MASTER. In this mode the

b 62 é
< ;

' Al
;' t

e A WA T L S o it o N L Wt TR i W A R

At AN LA c.s‘- N,

!" 5 i g W
R AT A 0 0 I N VT TN LT eV

GAC?.. 1> — lat-a7 BECos RESET*
DMAC<AB,/DB-A23/D1S> |reme-reanis EECL®
DMACSELX —_]css — GBERRX
GASx ___{rexs rRECex [DIREQx
GR/WX —__RAee Ackex | DIACKx
GUDS* ___|upes Pae | D1IRQ
GLDS* —_|Lnse REGie | DPREGw
DMACDTACK* | ovacs Ackin | D2ACKX
DMACOWNN ____| ouee Pat | — D2IRQ
DATA/ADDRESS DMACUASH ____|uass rE@es | D3REQO* DMA DEVICE
DEMULTIPLEX DMACDDEN® | maeves Ao@s | D3ACK* ConTROL
CONTROL DMACDDIR® ___ |DDIR a2 | D3IRQ
DMACHIBYTEX ___|HIBYTES rEGas | DAREQw
DMACER* | prm po@s | DAACK%
DMACBG* | Box Pa3 | D4aIRG
DMACBCGACKX __| BGACKs DoNEx] TCMPL %
DMACIRO* | 1rom
DMAC IACK®] TACKx
8 MHz __ lax

Figure 3.25 DMAC Signals.

upper 16 address lines are multiplexed with the data hincs,
DMAC<AS DO-A2I DI5>. The address data demultiplexing and global bus control
line dircction reversal when in the DMA mode 1s controlled by the the data address
demultiplex control signals in Figure 3.25. The demultiplex control signals are used by
the DMAC bus control scction to accomplish the demultiplexing and to control signal
dircction to correspond to the DMAC mode of operation.

The DMA devices (disk controllers) and DMAC are programmed by the CCU to
move blocks of data between the disk drives and Jata bufler memory. Once the data
transfer is initiated by the CCU, the disk controllers request scrvice by asserting a
request (DIREQ*-DJIREQ*®) to the DMAC. If the DMAC is not the current global
bus MASTER, it will request control of the global bus. After becoming the global bus
MASTER, the DMAC will assert an acknowledge (DIACK®-DJ4ACK™) to the dick
controller indicating that the requesting disk controller should put data on, or read
data from, the global bus as determined by the direction of the GR W* signal. The

DMAC will continue this process until all active requests from the disk controllers are

63

SN PRI NN LA "
SISO Y

TIRLLEAE AL

=)

-

satistied and then release the global bus. During the last transfer in a block of duta, the

DMAC will assert TCMPL* with the acknowledge to indicate to the disk controller
that the transfer is complete. After receiving the TCMPL* signal, the disk controller
will generate an interrupt request (DIIREQ-D4IREQ) to the DMAC indicating that
the status of the completed operation is ready to be read. The DMAC will pass the
disk controllers interrupt to the CCU by asserting DMACIREQ* and provide a vector
during the interrupt acknowledge cycle that identifies the disk controller that caused
the interrupt. The CCU uses the returned vector to read the status of the interrupting
disk controller to deternune if the operation terminated correctly.
1. DMAC Bus Control

The DMAC bus control section is shown in Figure 3.26. This section is used
to provide signal direction control and data’address demultiplexing corresponding to
the active global bus MASTER. When the CCU is the active global bus MASTER, the
signal flow is from the global bus to the DMAC. In this case the global address lines
GA<7.1> are used for DMAC internal register selection and the multiplexed
DMAC<AS D0-A23 D15> lines are used as the data path. When the DMAC is the
active global bus MASTER the signal flow is from the DMAC to the global bus. The
DMAC control signals that direct the signal flow are:

¢ DMACOWN™ . asserted when the DMAC is the active global hus MASTER
and uscd to enable external address drivers and control signal bufters

DMACUAS*® - asserted when the DMAC is the active global bus MASTER
and used to capture the value of the upper address lines on the multiplexed
address data bus,. DMAC < A8 D0-A23.D15>

DMACDBEN™ - used as the enable for external bidirectional buffers

DMACDDIR* - used to control the direction of the external bidirectional data
bufters, asserted if the transfer is from the global bus to the DMAC and
negated if the direction ts from the DMAC to the global bus

DMACHIBYTE* - asserted when the DMAC is the active global bus
MASTER and used to allow 8-bit devices to exchange data with memory on the
upper byvte (GD < 15..8>) or lower byte (GD <7..0>) of the global bus in the
implicit addressing mode.

The DMAC bus control circuit in Figure 3.26 consists of three functional
sections:
¢ bidirectional control signal buffers
¢ address driver latch

s bidirectional data bufters

GLOBAL BUS DMAC
BIDIRECTIONAL
’ CONTROL SIGNAL BUFFERS
GASK] m‘:;zs“sm GASx
GR/x A3 Bs GR/ W
- GUDS% Aa Ba GUDS*
GLDSx AL B: GLDSx
GDTACKX Be A GDTACK*
DIR E
GA¢7.. 1> DMACKAL-AT>
— DMAC<AB,/DR-A23/D15)>
GA(1S, . B>
L3373 DMACUASH
ADDRESS DRIVER/LATCH E
OE
BIDIRECTIONAL OMACOWNK
DATA BUFFER DMACDDIR*
GD¢ 5. .8> =gs DMACDBEN*
B S A 4
E DIR
i
HIBYTE | ¢ @ (L
BUFFER (% V/ a
—— ﬂ wD DMACHIBYTEx
LS24S
™
B A)
GD<7..® Lﬁl
BIDIRECTIONAL
DATA BUFFER E_DIR

Figure 3.26 DMAC Bus Control.

The bidirectional control signal buflers are controlled by DMACOWN®,
When the CCU is the active global bus MASTER, DMACOWN* is ncgated and the A

inputs to the control signal bufTers are passed to the B outputs, corresponding to the

A

:
;

LA |

e,

LA AT =]

~

CCU driving the controls and receiving the DMAC data transfer acknowledge. When
the DMAC is the active global bus MASTER the situation is reversed. DMACOWN™
is asserted and the B inputs to the control signal buffers are passed to the A outputs.

The address driver latch (LS373) denwltiplexes the upper address lines from
the data lines. As the active global bus MASTLER, the DMAC will assert
DMACOWN™ which enables the outputs from the LS373. The DMAC then drives the
multiplexed address data bus, DMAC <AS D0-A23 D15>, with the upper address of
the operand and asserts DMACUAS™. The upper address is latched on the rising edge
of DMACUAS*. At this point the global address bus has a valid address. GA < 7.1 >
driven by the DMAC directly and GA < 15..8> driven by the address driver latch.

The bidirectional data buflers are enabled by DMACDBEN* with direction
control from DMACDDIR*. The DMACDBLEN* and DMACDDIR* signals are used
for all transfers to or from the DMAC, regardless of who is controlling the bus. If the
CCU is the active global bus MASTER, DMACDBEN* is asserted after GUDS* or
GLDS*™ is asserted by the CCU with the directional control, DMACDDIR?*, governed
by the GR. W* [If the DMAC is the active global bus MASTER, DMACDBEN™ is
asserted after DMACUAS* is negated and before the DMAC asserts GUDS* or
GLDS*, again DMACDDIR* is governed by GR, W*,

The DMACHIBYTE* signal is a special purpose signal used to adapt $-bit
devices to 16-bit word, byvte addressed memories when implicit addressing is used in
DMA operations. In implicit addressing, the DMAC provides the single byvte address
of the source or destination in memory and performs the transfer in a single bus cvcle.
To accomplish this with 8-bit devices such as disk controllers, requires an additional
data path when even addresses are accessed. Even addresses will use the upper byte of
the global data bus, GD < 15..8>, but the disk controllers are on the lower byte of the
global data bus, GD < 7..0>. For implicit addressing, a path between the upper and
lower byvtes of the global data bus is provided by the HIBYTE buffer which is
controlled by the DMACHIBYTE* and GR W* signals. DMACHIBYTE* will be
asserted by the DMAC when an 8-bit device is used in a transfer with an even address
location. DMACHIBYTE™* enables the HIBYTE bufter to gate the upper byte of the
global data bus to the lower or vice versa depending on GR. W*. [f GR W* is high, for
a memory read, the upper bvte read [rom memory will be gated to the lower data bus
byvte and to the disk controller. If GR:W* is low, for a memory write, the lower byte
read from the disk controller will be gated to the upper data bus byte and to memory.
In explicit addressing the byte swapping is accomplished by the DMAC internally.

66

ACafe "R el tat Sal PatAa L QU SAR VAL VAl ¥ab Ful Sl Ry

L 4

CEE L

]
v
B
<l
b
‘5.
o
)
';7
-

P4

I

7 "
¢
.Q
.{»
- Y
2. Global Bus Control 1
J
The globul bus control scction generates the sicnals required for the global bus \
MASTER to access all devices on the global bus. The control signuls gencrated are "
standard 68000 tvpe memory control signals. The global bus control section consists of .,
»
a global memory control section and a global DENCK BERR generator section. The)
elobal memory control circuits are shown m igure 3.27, ':
A
.)
X}
4,
GLOBAL MEMORY SELECT ' .
N}
\}
! 3
D4SEL % b
GAcLl. . 1@ | D3SEL "
D2SELx* W
Y
D1SEL* 1!
0
1,
h
B
DISKSEL% L
GAC13. . 12> DMACRAMSEL X N
DATAMEMSEL % A
DMACSEL % N
A
GASx :‘
b
\
GLOBAL READ/WRITE CONTROL .
b
GLDSk — O "
_—1 b — GOELkk
8- -]
GR/ W% M .
GOEL* '
GLDSx e [t
GWELX
a GWEL %
.——_O

Figure 3.27 Global Memory Control.

67

- i ot b, < Y

KRR S

The global memory select circuit decodes global address lines GA < 13..12> (o
generate the chip selects for the DMAC (DMACSLCL#*), data butfer memory
(DATAMEMSEL*), CCU DMAC control memory (DMACRAMSEL*) and dick
controller select (DISKSEL*). The DISKSEL® is uscd as the enable for another level
of global address decoding, GA<11..10>, which selects one of the four dJisk
controllers (DISEL*-DASEL*).

The global read write control circuit generates the output enables (GOLU*
and GOEL*) for read operations and write enables (GWEU™® and GWEL™) for write
operations. The output and write enables are asserted on a byte basis to allow byvte and
word operations with the selected device on the global bus.

The global DTACK BERR generator is shown in Figure 3.28. This circuit
terminates global bus data transters by generating the global bus data transfer
acknowledge (GDTACK*) for normal termination or global bus error (GBERR*) when
an unpopulated part of memory is referenced. This circuit uses a shift register as a
timer to provide 250 nanosecond time intervals for data transfer acknowledge
generation and a 2 microsecond time out for bus error generation. The dual ported
memories, data butfer memory and CCU DMAC control memory, may be busy during
a global bus access so the timer is inhibited by the wait signal (MEMWAIT*) asserted
by the dual ported memories when thev are busy. This allows the global bus access to
resume without generating a bus error when the dual ported memories are no longer
busy.

3. Global Memory

There are only two true memories in the global memory, data buffer memory
and CCU DMAC control memory. The port A circuits of these dual ported memories
were discussed in Figure 3.8 and Figure 3.17 respectively. The port B circuits for these
memories are shown in Figrere 3.29. The port B circuits are the same as the port A
circuits except for the different signal names used to reflect the global bus as the signal
source. The remaining global memoryv devices are the DMAC and disk controllers

which are treated as memory but are not true memory devices.

F. DISK CONTROL

A block diagram of the major circuits in the disk control section is shown in
Figure 3.30. The primary circuits are: DMA request delay, disk controllers, and disk
interfaces. The disk controller and disk interface circuits will be presented only once

because they are identical for each attached disk drive.

6%

2

n Ohi

-

v .

) Lo AT A .r\,‘_._ - _'-N-.-._' ..\.__- SUTR T LN ._-.,_- . .‘v_._-..' AT T T T AT

v

TR N A S T SO R O R U T R R O O R O AW I 9 U I U N A IV UV WV NG GP U R ON OO e

Il U0 g Gl Nl R G A LT AL S0 AR A LT T Tl ek L ‘l'{‘ 1
i

2.2

_C Lee DMACDTACK%
DMACRAMSEL %
L—@: DATAMEMSEL %
GDTACK o= D4SEL*
@: D3SELX
D2SELx
[T @: D1SEL*
GBERR* 4@_2‘45

g
o
\V A
it
95’5&'
rrrrrr— |

4MHz _| 8:
Qa
Q, L
GUDSX _ a Qe 25@nS
. GLDS* | Loem
MEMWAT Tx Lm

Figure 3.28 Global DTACK BERR.

The CCU communicates with the disk controllers via the global bus. The disk
controller’s internal control and status registers appear to the CCU as byte memory

locations in the global memory. The CCU initiates operations with, and checks status

of, the disk controller by rcading or writing to the disk controller’s internal registers in
a normal memory reference cycle.

The DMAC communicates with the disk controllers by using the global data bus,
global read/'write(GR/W*), and the DMAC DMA device control signals. This

communication is not a standard 68000 memory reference as is the case with the CCU

o
%
(
r
R
]

—

because the FDC uses an Intel tvpe bus protocol with separate read and write lines.
The DMAC will use implicit addressing for DMA transfers between memory and the

disk controllers. This means that the global address bus and globul memory control

.‘-‘.'-'l'l."’
D2L LA L

69

Ca55%]

T

s v
‘a ll'
2 "=

¥ ?
Je

LIPS

5 Y L D T R LR TR P S IR) A R T e et N R e Y A AL AT A
QOO TR NANNI U W ?) T T T e ST T S o T TS e AR

>

CQU/DMAC CONTROL MEMGRY DATA BUFFER MEMORY
PORT B PORT B
| e LA A i}
Gn¢is..ey ! ! !
GD(7..®) ! ! i
DRTAVEMSELM ! ! !
DMACRAMSEL ¢ ! [ro
GAcLl.. 1> _! ! !
]]]
t 1]
' |ra~a cEx A3 x| |' |-l % A2-18 cEx| |!
' luPFER BYTE LOWER BYTE ' |uPPER BYTE LOWER BYTE !
: 1077130 IDT7140 ! IoT7132 I0T7142 !
] |
WAIT® I[/0 WAITx r/o__| WAL Tx r/o__J WAITK [~ __‘
T a—?J a7 '] -7 gLt
] t
| (R ocEx Rk oExi | IRk OEx RANK OFx :
] i !
QEUK __! ! i
GELw ! ! !
Goex ! !]
GOEL# _! ! !
MEWAITR ! !)
[} ! i
b e m e e et e et e e e A e o e e e e e o M e M- J

Figure 3.29 Global Memory.

signals will be used to control the memory operation while the DMAC DMA device
control signals will be used to control the disk controllers. The DMAC DM A device
control signals are suflicient for the control of the disk controllers during D MA
operations; however, the disk controllers require additional circuits to generate the read
and write signals needed for data direction control.

In CCU mcemory reference cycles to the disk controller, the GR W * signal
follows the standard 68000 memory reference protocol: GR/W* = low indicates that
the CCU is writing to the disk controller, GR:\W* = high indicates that the CCU is
reading the disk controller. The disk controller reacts properly to the GR'W#* signal by
placing data on the global data bus during read cvcles and taking data from the global
data bus during write cycles.

In DMA operations with implicit addressing, the global address bus and memory
control signals are referenced to the memory being accessed. In this case GR W# =
high indicates that the memory is being read by the DMAC and the data path is from
memory to the disk controller. The disk controller will not interpret the GR, W= signal

70

ek 12

Ty -
AR ‘;":
R B W RL R

g

i 4

L]

‘-Pg'..",}'

LA

b g
R

XELSRZTL

SN,

’&‘_"

WWERA RN RANN RN N IONUVIN Y O AUIY T U TR EREIRENY RN NS R

Il
— DMR REQLEST GLOBAL.
; DELAY BUS
b 2 o T
| oEaL ¥ DISK 1 DISK DIsSK
DnACK=,/DnIRA contROWER] iNTeRFAcE F 7] mRIve
" DIACKA/DLIRA
| e - DIs< 2 DISK DISK
CONTROLLER || INTERFACE DRIVE
D2ACK = T2IRA
_ DREGS - DISK 3 : DISK .y DIS¢
CONTROLLER INTERFACE DRIVE
03ACKA/D3IRA
\ DREQ4 -] DISK 4 DISK DISK
N conTROLLER [INTERFACE 7] DRTUE
D4ACK/D41RG

Fgure 330 Disk Control Block Diagran.

correctly in this cuse unless a means ts provided to reverse the sense of the GR W
signal in DMA operations using impliat addressing. The circuit that accomplishes the
proper interpretation of the GROW# signal is part of the disk controller blocks in
Figure 3.30.
1. Disk Controller

Lach disk controller block in FFigure 3.30 contains the circuit shown in Figure
3.31, where the n in signal names may be from i to 4 representing the possible disk
controllers. This circuit is based on a Standard Microsystems Corporation Y268 floppy

disk controller (*'DC). The FDC can control up to four disk drives and can be

By o e or ce w6

configured to control 8 inch, 5 1/4 inch, or 3 1,2 inch disk drives with capacitics to 720
kilobytes per disk. The configuration presented in Figure 3.31 is for standard § 1 4 inch
disk drives.

The signals on the right side of Figure 3.31 arc the control signals exchanged
with the disk interface circuit which controls the disk drive operation. The signals on
the left side are the signals used by the CCU and DMAC in performing DMA

operations.

71

Ala X5 A ¥y 2ve #fy &Y. 4N, R W U UG TR LA v/ G R0 R L/ M .'V{T;"J"”-'WW‘.'JVYN";V'J\”JV‘JT
GLOBAL BUS/DMAC DISK INTERFACE
US4x
US3e
US2w
sz68 usts
16 Mtz QK %
RESET»
% - L—{RaT HIL HOL
DnSEL % CS» LCT/DIR LCT/DIR
: GACL) Pt FR/STP FR/STR
, GD«<?. .8 Joi: - o FL:_P;;S LF‘C;T?'RQ
,'- DnIRQ INT Z — ’
nREQ IRQ Rebw/SEEX
: oG ROY[. mov
« ToPLe q: | % E—
[E—
$——Q Wwoout b wpouT
e T
. MM B
RDx WRx%
GR/
GLDS» t 9e
b = = RD® GENERATOR
gt -
[732
) (] Wr GENERATOR .
LS| »m -_
¥
N T imu
nmm:-__“__%c
v [Figure 3.31 Disk Controller.
L} .
)
St
K The IFDC has two intcrnal registers accessible by the global bus; the main
)
oy status register and the data register. The CCU programs the FDC by writing command
o parameters in the FDC data register and checks status by recading the main status
)
)
;,:: register. As previously discussed, the CCU operations on the FDC internal registers
W . . K .
.;' follow the standard 68000 memory reference protocol. The I'DC register sclection is
¥
pty controlled by global address bit 1 when the F'DC chip select (DnSEL*) is asserted,
a GA < 1> =low sclects the status register, GA < 1> = high sclects the data register. In
&
B DMA operations when DnSEL* is not asserted, such as implicit addressed DMA, the |
l“q . . !
e data register will always be selected. ‘
B \
e
o 72
s'l‘
B
e
\."
s:l‘
o
'“.
n

Y e R N S N VT Y TN e e e e T e SR T
oL o - v

) . N P L e g e e
b‘; X} "0‘ 'b.uh J’!t"‘\ .\' ot e’ .l' “ (W X n o B ‘8. " -

P R O R R R RN R AT KT R WOUTRA NI RAA A IAC AT AR T MIVIN IR T ANV VIR AR IRA T F RO AT RN

The RD* and WR* generators interpret the control signal inputs to determine
the proper sense of the FDC read (RD*) and write (\WR*) signals. The upper AND
gate in each generator is used to generate the proper assertion level for a standard
68000 memory reference from the global bus. The lower AND gate in each generator is
used for DMAC implicit addressed DMA operations.

y Standard 68000 memory references from the global bus will have the FDC
. chip select (DnSEL*) and global lower data strobe (GL.DS*) asserted. These signals
cnable the upper AND gates in the generators and allow the global read write
(GR W*) signal to select the proper FDC read or write signal: GR W#* = low asserts
WR* GR, W* = high asserts RD*.
DMA operations with the FDC follow the three signal handshake protocol
described for the DMAC. When the FDC is ready to read or write data it will assert a
request (DnREQ) to the DMAC. The request does not go directly to the DMAC but

, must be delayed for a short period as will be described in the DMA request delay
. section. The DMAC will respond to the request, after becoming the global bus
" MASTER, with an acknowledge (DnACK™*) indicating that the FDC should take data
: from. or put data on, the global bus. The request-acknowledge handshake takes place

for each byte of data transferred. The final signal in the handshake is the transler
complete (TCMPL*) signal from the DMAC which is asserted with the acknowledge of
the final byte to be transferred. The TCMPL* and DnACK* signals are combined to

LE v

'ie assert the terminal count signal (TC) which tells the FDC that the final byvte transfer is
in progress and will cause the transfer to terminate upon completion of the transier.
After the last byte is transferred, the FDC will generate an interrupt (DnlRQ) to the
. DMAC and follow the protocol described in the DMA control section. It is up to the
‘ CCU to read the status of the completed operation before initiating a new operation.
The above DMA protocol uses the GR/'W* signal to control data transfer
: direction. As previously discussed, the GR W* interpretation in implicitly addressed
: DMA operations is opposite to that of normal giobal bus memory references. For
:: implicitly addressed DMA operations the GR W* sense is corrected by the lower AND
:e gates in the RD* and WR* generators. In implicitly addressed DMA operations the
* FDC chip select (DnSEL*) will be negated, disabling the generator’s upper AND gates,
; and the DMAC acknowledge (DnACK*) will be asserted. Asserting DnACK* enables
j the lower AND gates to correctly interpret GR-W*, GR W* = low asserts RD¥,
GR W* = high asserts WR*, providing the opposite read write sense from normal
N global bus memory references.

¥ 73

S IO ST U U USOWY WY W W ST WO U UM PR S T "; d

The lower AND gates in the RD™ and WR* generators are disabled by the
FDC chip select (DnSEL*). This is not necessarv if onlv implicitly addressed DMA
operations are performed because DnSEL* and DnACK™ will not be asserted together
in implicit addressing. However, the DMAC can use explicitly addressed DMA ‘
operations which use the normal memory reference GR W# sense and asserts DnSEL*
and DnACK*. Disabling the RD* and WR* generator’'s lower AND gates with
DnSEL* will allow the proper RD* and WR* signals to be generated for explicitly
addressed DMA operations. Explicitly addressed DMA operations are not the noral
mode of DM operations in the DCM because it takes twice as long to move a Lvte
of data, two memory cyvcles, but explicitly addressed DMA operations are supported in
case of future need.

The disk control signals shown in Figure 3.31 were previously defined in
Chapter Il as the standard control signals used by most disk drives. The disk control
signals generated by the FDC are not all required by the 5 14 inch disk drives used in
the DCM, but all of the disk control signals are sent to the disk interface circuit for
buffering and demultiplexing to make them available in the event that different tvpe
disk drives are installed. This allows changing disk drive tvpes by reconliguring the disk
drive connector to include the signals required by the particular disk drive installed.

All signals exchanged between the FDC and disk drive require buffering by
receivers and transmitters because the FDC is not capable of directly receiving or
driving these signals. Additionally, four of the disk control signals are multiplexed in
accordance with the operation the disk drive is to perform. The multiplexed signals are
logically grouped into read, write operations (RW*) and seek operations (SCEK). The
multiplexing is controlled by the RW* SEEK signal to produce the signals of
Figure 3.32.

2. Disk Interface

The disk interface circuit provides disk drive control signal conditioning and
demultiplexing between the FDC and disk drive. The disk drive control signal protocol
calls for driving all signals with open collector drivers, with most signals asserted low.
The disk interface circuit is shown in Figure 3.33.

Signals sent to the disk drive use the 7416 and 7417 open collector buller)
drivers with terminating resistors supplied at the disk drive ..ceivers. These drivers
supply the required drive current and translate high asserted I'DC signals to the low

asserted level required by the disk drive.

74 N

SIGHAL GEMNERATED

FCR

DISK OFERATION FOC SIGNAL
FDC SIGNAL READ/WRITE SEEK DIRECTICN
Rk /SEEK Ridx% SEEK cuT
LCT/BIR LCT DIR ouT
FR/STP FR STP ouT
WR/TS WP TS IN
FLT/TR@ FLT TR3 IN

Figure 3.32 FFDC Mulptiplexed Signals.

The disk drive uses open collector bufler drivers to send signals to the I'DC.
741.8240 tristate receivers are used to receive the inputs from the disk drive. The
incoming signals are terminated at the receiver inputs by 130 ohm resistors, the
terminating resistors arc not shown in Figure 3.33.

The 7418240 tristate receivers also multiplex the incoming disk drive signals
and demultiplex the I'DC outgoing signals in Figure 3.32. The RW* SELK signal
selects the proper transmitters and receivers for the chosen operation and disables (puts
in & high impedance statc) those transmitters and receivers not selected.

3. DMA Request Delay

In the prior discussion of the DMA protocol that is followed by the 1'DC, a
need for delaving the FDC's DMA request (DnREQ) was mentioned. The I'DC’s
DnREQ signal to the DMAC must be delayed in reaching the DMAC because the
DMAC may respond too quickly for the FIDC. This situation arises because the FDC
asserts DnREQ 800 nanoseconds before data is ready for transfer, but the DMAC may
start the transfer 375 nanoseconds after receiving DnREQ. An attempt to transfer data
before the FDC is ready, less than 800 nanoseconds after DnREQ is asserted, will
result in an error termination of the transfer.

The response time of the DMAC to DMA requests is determined by the state
of the DMAC when the request is received. If the DMAC is not the global bus
MASTER, it will take a minimum of twelve clock cycles, 1.5 microseconds at § Mllg,
to become the global bus MASTER and start the transfer. If the DMAC is already the

75

- RO PN W N R e ™,

oW LSV VS LSOO U MW L LW e LW LW U

4%
i 74L7
(-:“
{
K}
R '
T,
i % DISK DRIUVE
! ~
L =
[L us3x
L us2x
- L UStx
DIR*
L sTPx
. J L_—__ LCT%
3 FRw
N — e TRO®&
: [p—
3 0% FLT%
A ROY*
o0 DISK CONTROLLER (———— IDOX%
3."‘ — RRDx«
!Xig US4x WE %
[%}
) US3 — - WDOUTX
A HD%
USLx MM
LCT/DIR 4 HDL &
(X] /S L—M— ~ .
"W WP/TS
Y FLT/TRD
e R/ SEEK
',,'u; RDY
i 1DX
RRD%
WE
s WooUT
.hﬁ" HD)
) Y 2.2
R HIL
_h\g sUnC 74186
s;g
N
i
o
i’:
¥4
g
"
\’ﬁ
KK
s"‘ !
> |
R |
b
& Figure 3.33 Disk Intcrface. |
Y
X |
l: 7() .
‘Q I
"
s 1‘
N
A
T‘:
W3
oy
]
)
OO UOURIOUCLO XYM A M AN

global bus MASTER. servicing another ['DC when the request arrives, the DMAC
may start the transfer in three clock cycles, 375 nanoseconds at $MIHz. This is possible

because the DMAC will respond to a request received bhefore S2 of the current DMA

cvcle immediately upon completing the current cycle. The time difference between S2 of

the current cvcle and SO of the next cvcle may be as short as three clock cveles for a
IDMA read operation.

From the above it is apparent that with more than one FDC attached to the
DMAC there is a possibility of the DMAC responding to a DM:A request before the
[FDC is ready. A 425 nanosecond delay of the DMA request from the FDC is required
to ensure that the DMAC does not respond before the FDC is ready. The DMA
request delay circuit that provides the required delay is shown in [Figure 3.34.

The DMA request delay circuit generates the DMA request signal (DnREQ#)
to the DMAC after delaving the DMA request (DnREQ) from the FDC. The delay for
cach DMA request is accomplished by two D flip-flops, with common clock inputs.
The delay period is a minimum of one clock period and a maximum of two clock
periods. The common clock input of 2 Mz provides a nunimum delav of 300
nanoseconds and a maximum delay of | microsecond.

The first flip-flop will be set on the rising clock edge after DnREQ assertion.
The first flip-flop’s output is connected to the second flip-flop’s input which will cause
the second flip-flop to set on the next rising clock edge after sctting the [irst flip-flop.
Sectting the second flip-flop asserts the DMA request (DnREQ™) to the DMAC.
Minimum delayv occurs when DnREQ is asserted one flip-flop set-up time prior to the
rising clock edge that sets the first flip-flop. Maximum delay occurs when DnREQ
assertion does not meet the flip-flop set-up time and must wait for the next rising clock

edge to set the first flip-flop.

717

. £ 2
I‘.
n

M

c €

- H 5 e
TN

¥

DIREQ

7 @ l :: o D1REQGx

[R-—ggc]

D3REQ P

a l :: o D3REGw

D2REQ

D4REQ

D Q
Ls273

IE; . D2REQx%
D Q
Lsar3

l > ~ D4REQx
D a

LS27T3 LSS
P> >
o |
2 MHz
RESET%

Figure 3.34 DMA Request Delay.

AN T Ll &L LA T S

<

g Ra* AT : o < B2 i gat ga® 0 8 0¥ gat ot
S 8t Ve il s ats aie aihiate’ati ali ati a¥i atntateaigtaipt biatgadgt by iaatas TS ba aVd'ath nf) ath aV L 2tk a¥h¥ 29°ada‘eP; 7 922l Y \

@

:

'

\
A

IV. SOFTWARE DEVELOPMENT

2
This chapter will present the interaction betwecen the DCM's internal control t
software and the software of the user module (USER). The user module mayv be the ‘
host operating svstem (IIOST) or anv other module on the host bus. [t is assumed that .
all USERs will get permission from the HOST betore accessing the DCM to cnsure :;:
data integrity and security. This allows multiple VME bus MASTLERs to use the DCM .
provided the HOST coordinates the USERs activities. N
The DCM's internal control software would consist of an onboard operating ,
svstem (OBOS) that is capable of coordinating four external USERs and controlling i':',
the DMAC and four disk controllers. This is no small task and the development of the :‘:
OBOS is bevond the scope of this paper; however, the basic interaction between the .%
USER and OBOS will be described with flow charts. "

The DCM appears to the USER as a segmented block of memory as described in

Figure 3.5 where each disk has a dedicated host control buffer memory (CMD butler) :‘.
) and data builer memory (DATA buffer). Each disk also has a semaphore (BUSY flag)

to indicate the disk’s avaiiability for use, a command present interrupt generator (CMD
‘ interrupt), and a status area (STATUS).

e

Access to the above memory locations for a disk is controlled by the BUSY [lag

X associated with that disk. If a disk’'s BUSY flag is set, then that disk’s CMD buffer, %
: g - . . \
DATA buffer, STATLS, and CMD interrupt memory locations are not to be used by

any USER other than the USER that set the BUSY f{lag. This is a software convention :_:
‘ that must be followed by all USERSs. ;"'
. : N
The format of a command in the CMD buffer is very flexible because there is .
onlv one hardware convention, the location of the CMD interrupt generators. The "
" software designer is free to choose a command format based on the needs cf the USER of
and the DCM's operating system. The [ollowing is a sunple example of a command ~3
N
format to illustrate a possible format for a disk read or write comunand. The [ormat is N
organized in bvtes with byte I as the first byte in the CMD buffer: ¥
§ ‘ ¢ Dbvte | - number of bytes in the command
‘~ e byte 2 - corunand completion interrupt vector number to be returned to the ::f
‘ user upon command completion: the upper live bits are USER selectable and N
the lower threc bits specify the the interrupt level <94
¢ byte 3 - operation code -
;l .l
79 o
1
(]
L]
»
»
!
) “' ¥ L-”-.l.a;\‘-b ‘Q'A W !‘,.‘!'. ’a’v'a‘..\'. ‘\,‘i’ -‘.w l.n‘l" W, |‘- l'«b! a\‘- '. », 3 -l‘. I l‘.l " .- "v" ‘f"'\. i "-J ',q\"/" ol » . v ""{".*f'i,'-(\'Rﬁ.v" o

¢ byvte d - track number

e byvte 5 - head number

e bvte 6 - sector number

e Dbvte 7 - data transfer length
The above format may repeat with a new operation code in byvte 8 followed by more
parameters, etc. The number and meaning of the parameters following the operation
code may vary with the diflerent operation codes because the OBOS would use a tuble
look-up algorithm to decode the operation code and expected parameters.

The primary limitation on the number of operations that can be included in a
single command to the DCM is the amount of DATA buffer memory per disk.
Operations that use the DATA buflers, disk reads and writes, will be limited to the
number of disk sectors that will fit into the DATA buffer; this means that a command
would be limited to a single disk read or write if the DATA bufler is the same size as a
disk sector.

A. USER COMMAND EXECUTION

A flow chart of the steps a USER follows in executing a command with the
DCM is shown in Figure 4.1. The USER checks the availability of the selected disk
(Dn, n [rom | to 4) with an indivisible read-modifv-write cvcle to the Dn BUSY flag,
setting the Dn BUSY flag, if it was not set. If the BUSY flag was previously set. the
new USER mwst wait for the disk to be released. This ensures only one USER at a
time gains access to the disk. If a write operation is to be performed, then the data is
written into the Dn DATA bufler. The command is then written into the Dn CMD
bufter, and the final step is writing to the Dn command interrupt generator, gencrating
the Dn CMD interrupt to notify the OBOS that a command is present. Alter the
command is issued, the USER continues processing until the DCM responds with a
command completion interrupt signaling the USER to terminate the command.

The DCM will notify the USER of the command complection by generating the
interrupt and returning the vector number specified in the command. The USER reads
the Dn STATUS to determine if the command was successtul. For a read operation the
data is read from the Dn DATA buller. The USER indicates that the results, status or
data, have been read and releases the CMD bufler and DATA buffer by writing to the
command interrupt generator which generates the CMD interrupt to the OBOS. At
this point the USER’s command is complete, but the Dn BUSY flag is still set.

30

-

| RMW CYCLE @
N

SET Dn
BUSY FLAG

READ Dn STATUS

W

WRITE DATA
IN Dn
DATA BUFFER

WRITE CMD
IN Dn
CMD BUFFER

| se7 on cMD INTERRUPT | | SET Dn cMD INTERRUPT |
—————

READ Dn
DATA BUFFER

CONTINLUE

N CcMD

COMPLETION

INTERRURPT
FROM

Figure 4.1 USER Command Lxecution Flow Chart.

SIS

) e e m

PR R A

- e i b A

o,
-

-
-

OO0

ia?

R TIR ER EN EN AT IR EN T OU O TA T OR TIR X)

-

The Dn BUSY flags are cleared by the OBOS. This allows the OBOS to take a
disk off-line due to a failure or for multidisk operations such as copving {rom one dick
to another dish. The disk copy command can be issued to either the source or
destination disk and the DCM can capture the remaining disk when it beceonies
available by either not clearing the BUSY flag if it was in use or by imumediatelv -etting
the BUSY flag if it s idle.

B. DCM COMMAND EXECUTION

The steps followed by the OBOS in initiating a command received from the
USER are shown in Figure 4.2. When the Dn CMD interrupt is recognized, the OBOS
locks out further CMD interrupts until the current command is started. The command
i1s decoded and checked for validity with invalid commands causing an error
termination indicated by an error status code. The decoded command parameters are
passed to software modules that program the DMAC and disk controller for the
requested operation. The OBOS enables CMD interrupts and continues processing
unul the command is complete which is indicated to the OBOS by an interrupt from
the DMAC.

After the OBOS recognizes the command completion interrupt from the DMAC,
the OBOS locks out further interrupts and checks the command completion status of
the DMAC and disk controller. The results of the command completion status check
will cause the OBOS to enter a normal or error status code in the Dn STATUS [for the
USER to check. The OBOS then notifies the USER that the command has completed
by generating an interrupt on the host bus and returning the vector number specified in
the command. The OBOS enables interrupts and continues servicing other USER's
commands until the USER indicates with a CMD interrupt that the command results
hove been read. At this point the OBOS clears the command status and determunes if
tne disk can be released for use by another USER. If it can, the OBOS releases the disk
by clearing the Dn BUSY flag, otherwise the Dn BUSY [lag is left set and the Jisk is
used by the OBOS for another operation, such as a disk copy.

% T R A R B S A G L N

v

e
220

PR
[IR

A

PR ST IHE |

r—

~
Y
“~
.
)

R T R AR oY T BTERRRIEN A VWL Wl A W AU WY Bag Pag o g byl
B3
!
| &
LOCK-0UT
CMD INTERRUPTS DISABLE INTERRUPTS
PROCESS CMD
SET BAD
CMD STATUS
SET Dn SET Dn
NORM STATUS | |ERROR STATUS
SET~UP
DA]
CHANNEL
OF DMAC INTERRUPT HOST
SET-UP Dn ENABLE INTERRUPTS
. FDC
START CMD
EXECUTION

J

L;NQBLE CMDO INTERRUPTS

CONTINUE

N CMD
COMPLETION

INTERRUPT
FROM

CMD
INTERRUPT

CLERR Dn:
STATUS
BUSY FLAG
]

ligure 4.2

S e e
" e e

-,

83

o
" ¥, 9

-
AN A

DOCN Commiand Execution Flow Chart.

.‘ .. ~. \ (- N

RSO

1'1."

0-—

A i)

E IR S PR BN N

N ®,r s s_a

Ik Y ST PE g

- o g wa e

T T

L

LY b

doa o

e e 2 Y

- W M e

o

Pae o

-
- i

[NN

- B W -

\‘.

TN T TN U R TR R I WU O A U U IOV LS R URVLAT AR A Sial O L AT LW W

V. CONCLUSION

A. SUMDMARY OF RESULTS

The principal goal of this thesis was the design of a flexible hardware kernal for a
multidisk control module (DCM) which supports concurrent disk operations.
Flexibility in three areas was desired:

¢ host bus interface - the ability to easily adapt to a variety of host bus
architectures

¢ host operating system interface - compatible with most modern operating
svstems and easily integrated into an existing operating svstem

¢ disk drive interface - easily adaptable to a variety of disk drives.

The flexibility objectives of this thesis were met by using a modular design with
the interface dependent hardware contained in separate modules and isolating these
modules from the internal contro! modules. The host bus interface is isolated by dual
ported buffer memories with the bus dependent hardware contained in the host bus
control module. The disk drive interface is isolated by the disk controllers with the disk
drive dependent hardware in the disk interface modules.

An added benefit of the modular design i1s device manufacturer independence.
Each hardware module has a well-defined and relatively simple interface to adjoining
modules. This should make it a simple matter to use different devices in implementing
a module’s function.

Concurrent disk operations are accomplished by using a separate disk controller
for each installed disk drive. Each disk controller is capable of controlling up to four
disk drives, but concurrent operation of all four disk drives 1s not possible. The DCM
design will allow up to four disk drives per disk controller which means a maxunum of
16 disk drives may be installed.

The DCM architecture separates the data transfer path from the control path.
This allows the control functions to operatc at a different speed than the data transfer
functions. The data transfer functions can be optimized to accommodate the data
transfer rate of the installed disk drives without affecting the control function
operation. The net result is that a relatvely slow microprocessor can be used for
overall control and a fast direct memoryv access controller can be used to increase data

transfer rates.

84

- R
P NP Y T 4 T B A S TR P A

P R I el

SN

St

P

o D A N e

T oy A

SN

\D
4

%

1,900
RSON

JaB gl ad gl Eal a8 W B Tl Ve Ua B Daf Wi R Vol eu V4 1A% vu® ok Zak valh Ual end {0 020 4ol o) Vol @ el $o) Uah 4k ol hal PalL Vol ép)

The DCM could not be exercised as part of a host svstem because a VM bus
based host was not available. Such a host is being developed in another thesis and will
provide a test vehicle for the DCM. The DCM data transfer circuits were tested with
Tandon Corp. model TM100-2 and TEAC model FD33BV disk drives. The circuits
operated satisfactorily in all modes with onlv minor disk interface adjustments

necessary when switching between the two disk drives.

B. RECOMMENDATIONS FOR FUTURE RESEARCH

Two areas require further work: development of eflicient software to optimize
operation and investigation of mecthods to use non-DIP devices in prototyping.
Developing the internal control software required to fully exploit the hardware
capabilities will be a major task. The software required to interact with multiple uscrs
and cfficiently control concurrent data transfers is a relatively complex onboard
multiuser multitasking operating svstem.

Physical device size and limited prototype board space was a major problem
during hardware development. The prototype board was limited to accepting onlv
standard DIP devices which do not use area efliciently. For a large svstem. such as the
DCM, a means of prototvping with the more area efficient shrink-DIP, PLCC, and

PG:A device packages should be developed.

oC
n

- RN N - - - T L R T o R R P L T L NSRS S MY T ¢ W
TP Wi B (At * + e "‘ '(AT ey Ry \' N,

LA i

- .

-

-
"
)
\
N
v
-

&
.
n
"
w
‘-
-

PR

A RSN]

%

~

&
”
P

I R R R N O T TR N Y O O R T T R AT D WA Vo M W W RO IOV O AR Y WU NRAN Y Y
APPENDIX
FUNCTIONAL BLOCK SCHEMATICS
X 4 | 3 | 2 | 1
H
; o o
i
ACLa. . Ly ~ Al2. .9 ;”750 (A2, . 1y
) — a0 -
H a
-l c c
| 9 o
: AB. .S Oye Qye A
w
[;L‘N §8
—ﬂ Loa -
: =,)
B A4.. 1>\ Dyg One B
e RSB
7% A— zag W a
¥ rs
1 ONBORRIK Y
- -
DOL _o@__ﬁ_ RESETH
A A
‘ s 1
1 ADDRESDY COUNTERAATCH 18 DEC 1987
h (TR R
a4 ATEUVEN BROOKS 1 0F L
P] 3 | 2 | 1

o ! - " P AT T (S T T R
'-.1'-".‘.5.4.&, {'.‘l‘."q AL nn Ny Py ‘A <o

AN 2N,

58 Y

¥ 1 D 4 aid ' B V8 p g ate ni3iaRgtati il ate tate atet N far tat et et 940 Vat Rt g 0 a0 g2t) 0" 0% 070 4" Wu> W WL
P | 3 | 2 | 1
1
D
X
825123
FPGA
WELk __{ALS G1 | INT4%
WELK __|Al4 G2 | INT2%
c p12 _]A13 G3|_ INT2%
A1l _|A12 G4 INT1%
AlE 1ALl GS{_
P9 __{P1D G5l .
P8 _{Ag G7|—
a7 _{AB (c -] I
06 _|A7 -]
|| RS _lre
R4 _lns
A3 (A4
. 2 R
L _lA2
ONBOFRD __{AL
N P
B
. . WELK WEL* A12 ALl AL A9 ADB AOT ADG POS AG4 AT3 AZ2 AB1 ONBOARD
; _ INTax © 1 & @ 1 1 1 1 1 1t 1 1 t 1 1
: INT3« 1 & © © @ 1 ? ®© @ @ ® © 1 B 1
g IN2« 8 1 © © I © 9 © ?9 B8 ®8 {1 2 1 1
INTI» 1 ©® @ B © 1 2 @ ®8 @8 1 © © 1
:
i A
1
1
!
A
[. TITLE! DARTE!
. COMAND INTERRUPT 18 DEC 1987
b ADDRESS DECODER
ENGINEER? PAGE
STEVEN BROOKS 1001
4 | 3 | 2 | 1
87
e .-

M NS TR ORI RN ¥ A 0P Fa¥ VP (" (W W LI SR TR LS
A e T T T e Sty l“!!,‘._ ‘.2".",0’.._ UL RS0 100 8 M X WM ol AU MO, ol oy £ .'.

&
%

iy e o s SR S

CA AN

oA L

o o=
A A

PP et A]
L - -

[A AAAANS

: A al ,
Qo iR 4. gEacal Sab AR Wed Fa8 T Fa Val ogl val Al 7a® ol Uuh sl dap eng) Tad 928 2l v U ANANARNTY " 4.2l tall v, ol Vol Seboval Wi S %l 4,% 0,

J
;
L]
3
. 4 I 3 [2 l 1 .
)
X D D)
3] ; N,
v
‘ . !
‘s 2.2 ‘j ’.J] 'j [? [? [’J FSa]
i COPRATON
K - ar —t
¥ As
? :: {
' Ae
A
ﬂ‘]
Ae
ABD)—— — ADDR MATCH* o
2= [| .Y [+ N
k c 922 Be "
: T — .
20 ———————— 5 4 4
¢ Al __ _ _ l§e g
' A8 ___ Igs s
§ AL7? —_——iB
RLB Be
suDc roe A=8 .
} — - N
) R
¥ 2.3(s "y
) k .
As S
‘ As -
- Ax
Ae
' AlS By BAl- !
D Rl4 Ba A= B r
) B AL3 81 B ¢
2 AL2 Be 1
i X
N BA N
l’ TACK« =B]
‘«" AB P
‘l
: frd y:
!‘ % »
»)
! >4
» .J
s
) A A .
X .
#' -
K
} -
¢ TITLE! DRTE:
[MODULE SELECT 18 DEC L9e?
1 ADDRESS COrfPARATOR
o ENGINEER: P
) ITEVEN BROOKS 1 0F 1 .
: 4 !) | 2 | 1
)
¥

2 AL . W WL N e e TR e O T AT T A N N
O O O T S N R T R R R TN L R X ? ; o e e e Y

A a

U YO LA ILIE W PR U TR TR T U SA E WA WL W WU WAL M AR MR R OO XA WY IR AT A ATRID N LA MU N NIV Y YV U

b,
s,
LIST OF REFERENCES =
,]
L. Fischer, W., "IECE PI0l4-A Standard for the High-Performance VME Bus.” ‘.:
K [EEE Micro, v. 4, pp. 31-30, February 1983, A
2. Dawson, W.K. and Dobinson, R.W., “A Framework for Computer Design,”
[EEL Spectrum, v. 23, pp. 49-34, October 19806. -
3 Borrill, P.L., "Microstandards Special Feature: A comparison of 32-Bit Buscs,”
IEELE Micro, v. 5, pp. 71-79. December 1983. -

4. Bach. M.J., The Design of the UNIX Operating System. Prentice-11all, Inc., 1986.
[
o
S. Tanenbaum, A.S., Operating Systems - Design and Implementation, Prentice-11all, :

J Inc., 1987.

3
1 g
5 o
_
X
[
f
(
23
f

L R NS A

=

=
-‘
-
..
-
T
s
N

A T S T R TR R TR R WU MU W OO R O O TR PR OO O YO M Y . A i - i o i '.'I
‘Q"
’
A
e
» \J
1
r
|;
INITIAL DISTRIBUTION LIST)
o
No. Copies R
l. Defense Technical Information Center 2 :5
Cameron Station -
Alexandria, VA 22304-6143
2. Librarv, Code 0142 2 3

Naval Postgraduate School
Monterey, CA 93943-5002
3. Department Chairman, Code 62 1
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5000

4. NASA - Johnson Space Center 1
Attn: Dr. Larry W. Abbott

/ l":‘:*‘"&ﬂ' P".'_‘} -;'-/-<".f

b

]

Mail Stop EH431 >
Houston, TX 77058 '::

5. Professor Frederick W. Terman, Code 62 TZ 1 N ':
Department of Electrical and Computer Engineering :
Naval Postgraduate School o

Monterev, CA 93943-5000
6. COMSPAWARSYSCOM 1 !
PMW PMA-159
ATTN: LCDR Steven L. Brooks
Washington, D.C. 20363-5100
7. LT David M. Sendek I
SMC 2783

Naval Postgraduate School
Monterey, CA 93943-5000

{

St S S SRl B &y

5

7

[d

90

h T S T TR YA J
Ay

LAY

S48, 0 009 sob 0b o

R

NS

WKW

R P N S A Nl YA IO T WU S AR DA

Tlatewt

e d

R R

Lo

4

B

-

v
LE B N 3

b

